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Abstract

For more than 20 years, experimenters have used the resistively-and-capacitively-

shunted-junction (RCSJ) model to predict the dynamics of Josephson junctions. As the

sample area decreases, two effects ignored in the model become relevant: first, the low

impedance of the leads at high frequency (roughly 100 0, compared to the dc impedance

of 1 GQ), and second, quantum fluctuations of (p, the order parameter phase difference

between the junction electrodes. We have observed dramatic evidence of the importance of

both these effects.

Using electron beam lithography and dilution refrigeration, we have made samples

as small as 0.04 Lm2 and measured their properties at temperatures from 20 mK to 6 K.

The ratio of the charging energy EC =- e2/2C to the Josephson coupling energy EJ varied

from 0.01 to 6.

When R, < 1 kM, and EcIEj is small, the devices act like the conventional ones of

earlier investigations. As Rn and Ec/Ej increase, we observe striking new behavior. First,

an anomalous resistance RO appears on the low-voltage branch of the still-hysteretic

current-voltage characteristic (IVC), inconsistent with the RCSJ model, but allowed by a

model that contains the leads.

Second, the retrapping current 1r attains a non-zero, plateau minimum as T -* 0, in

contrast to the e" /kT dependence predicted by the RCSJ model. To explain this, we must

add to the model both the leads and the onset of pair-breaking quasiparticle tunneling at

V = 2A/e. We present analog simulations and an analytic estimation procedure for 1, that

agree quantitatively with the data.

A modified RCSJ model, incorporating the leads, but keeping the assumption of a

classical phase, predicts that RO decreases at low temperature as e-2Ej/kT. The measured

Ro(T) is non-zero and constant at low T due to quantum fluctuations. We obtain a good fit

to the data by assuming that the leads limit the phase slip to 21rper escape from the potential
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well, but otherwise have no effect on the escape rate. At high temperatures, the escape rate

is given by the Kramers intermediate-damping result, while as T -4 0, it crosses over to

the prediction of MQT theory.

Finally, when a magnetic field is applied to the sample, decreasng EJ and increasing

EC/Ej, a new type of IVC appears, with features reminiscient of both the Coulomb

blockade and the Josephson effect. This IVC closely resembles those predicted by fully

quantum mechanical theories of a junction with a quasiparticle tunneling shunt.
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Chapter One

Introduction

The Copenhagen interpretation asserts that all phenomena are intrinsically quantum

mechanical. According to Bohr's correspondence principle, classical mechanics, which

predicts accurately the behavior of large objects (bowling balls, pendula, etc.) may in

principle be derived from quantum mechanics, in a suitable approximation. We understand

the classical mechanics of macroscopic objects, and can calculate their motion with

extraordinary precision. The same is true of the quantum mechanics of microscopic

entities, such as atoms, electrons and simple molecules. The details of the "ransition

between these two regimes, the physics of so-called mesoscopic systems, remains largely

unexplored, and is the subject of intense experimental and theoretical effort.

Solid state physics provides an abundance of examples of this research. Quantum

conductance fluctuations, unique to each sample, result from the interference of time-

reversed electronic Feynman paths in small metal wires and semiconducting devices

[Smith, 19891; they disappear in large samples, as the interference effects average to zero.

As a second example, quantized conductance levels have been observed in the transport of

ballistic carriers through short channels with width of order the Fermi w' .elength [van

Wees, et al., 1988]. We have tried to investigate the crossover from classical to quantum

mechanics through an experimental study of mesoscopic superconducting tunnel junctions.

Also known as a Josephson junction, this device, made of two superconductors

separated by an insulating barrier (see Fig. 1.1), has been an active research subject since

Josephson's prediction of Cooper pair tunneling [1962]. In the RCSJ model [McCumber,

1968], the current flows through three channels: the Josephson (supercurrent) channel, the

capacitance C formed by the junction's parallel plate structure, and the quasiparticle

tunneling channel with normal resistance Rn [Giaever, 1960]. Current conservation yields

an equation of motion for p, the phase difference between the collective superconducting

1
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(a)

superconductor 1 q- I

superconductor 2T2= ei P2 ] I T21

(b)

U(p)

Fig. 1.1: (a) Josephson junction schematic. Overlap of the superconducting wavefunctions

allows Cooper pair tunneling. (b) the Josephson potential, U((p) = -EJcosq-Nqp2e.



3

wavefunctions of the two electrodes. The motion is that of a classical panicle (whose

position and velocity are sharp variables) with mass proportional to C, damped by a fluid

of viscosity scaling as URn, moving in a cosinusoidal potential with amplitude

Ej = hA/8e 2Rn, A being the superconducting energy gap. This model is an outstandingly

successful description of the dynamics of conventional junctions with Ej >> EC.

EC = e2/2C is the energy due to a single-electron charge difference across the capacitor.

As we reduce the junction area A, Ej (-A) decreases, while EC ( -A1) becomes

larger. Ignoring dampingt, the system's Lagrangian is:

L =-2- ,-9 ) +Ejcos(p . (1.1)
2 '2e

The canonical momentum of p is Pq, = (h / 2e)2 Co. Localizing (p to one potential well

(Ap = 21r) leads to a momentum uncertainty App = h, as required by Heisenberg's

principle. The kinetic energy, therefore, has fluctuations of magnitude AK.E., given by:

(P)2 ( 2 2

AK.CE.)= T 2 2 = 4 Ec (1.2)

If AK.E. exceeds E j, the energy barrier to phase motion, the classical model breaks down.

We routinely make Sn-SnOx-Sn junctions with A = 0.04 pLm 2 and C = 1-2 fF. Since

e 2  1 hA 11
Ec/k = - K, and E / 8e k R, [k] K, (1.3)

we expect to observe the inadequacy of the classical picture in samples with Rn > 10 kQ.

t The effect of damping is to reduce the quantum fluctuations of qP (Caldeira and Leggett, 1981]. Our

calculation, therefore, is only indicative of the potential for breakdown of the classical model.
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A second assumption of the RCSJ model also fails as the sample area decreases.

When Rn is large, it is no longer possible to ignore high-frequency current flow through

the leads attached to the sample. Modem amplifier technology allows the lead impedance to

be -1 GO at dc. At frequencies above a few hundred MHz, however, transmission line

effects reduce the impedance to 50-100 Q. If Rn and 1/oC are much larger than this

value, nearly all the high-frequency current flows through the leads. In this work, we have

observed dramatic evidence of the importance of both quantum fluctuations and the

presence of the leads.

The samples used in this investigaion had Rn ranging from 500 0 to 140 kQ. The

ratio EC/Ej varied from about 0.01 to 6. We increased EC/Ej further by applying a dc

magnetic field to the sample, which reduces EJ.

When Ej >> EC, our samples behave like the conventional junctions of earlier

investigations [Danchi, 1983]. As EcIEj increases, we observe striking new behavior.

The I-V characteristic (IVC) is still hysteretic, but the critical current is greatly reduced, and

there is an anomalous resistance RO on the low voltage branch (see Fig. 1.2). The

combination of hysteresis and RO > 0 is absolutely inconsistent with the RCSJ model.

Secondly, the retrapping current 1r (defined in Fig. 1.2) attains a non-zero, temperature

independent value as T -4 0, pictured in Fig. 1.3, in contrast to the exponentially

vanishing Ir(T) predicted by the RCSJ model. Both of these new properties derive from

the low impedance presented by the leads at high frequency; to explain the latter we also

must invoke the existence of pair-breaking quasiparticle tunneling for V 2 24/e.

If we take the leads into account, but continue to assume that q is classical, we

expect Ro(T) to decrease at low temperature as the Boltzmann factor e'2E1 kT. In Fig. 1.4,

we see, however, that our measured RO(T) is constant at low temperature, due to the effect

of quantum mechanical phase fluctuations, described by the theory of macroscopic

quantum tunneling [Caldeira and Leggett, 1981; lansiti, 19881.
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10 R=140k
V ( tv) T 2OmK

5

0

1.5 RL
V(mV) ,

1.0

0.5

0
0 100 200 300 400

I(pA)

Fig. 1.2: Two IVCs for the Rn = 140 kil sample, with the same current axis, but

differing voltage axes. The top voltage axis is expanded 100 times relative to the bottom.

revealing the anomalous low-voltage resistance. 1c, 1, RO, and RL ar defined.
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Rn=1.1 k
10 4 7

6 1 103

a...

RCSJ theory

102  experiment

0.0 0.5 1.0 1.5 2.0

T[K]

Fig. 1.3: I.(T), data and theory, for the sample with Ra - 1.1 kM. The data level off at
low temperature, in contrast to RCSJ model prediction that lr vanishes exponentially.
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Rn -140 k.Q

10
2

101 00 experiment
0 00 0

13 0

classical theory

100

0 50 100 150 200

TC/T

Fig. 1.4: RO vs. Tc/T, data and theory, for the sample with Rn = 140 kQ. The data level

off for large TcIT, in contrast to classical prediction that RO vanishes exponentially.
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When we reduce the Josephson coupling energy even further with a magnetic field,

a new type of hysteretic IVC appears (Fig. 1.5). The voltage V(I) increases rapidly for

sn-,al currents, and then rolls over to a plateau at a voltage V = eI2C. There is a critical

current 1c, at which the voltage rises discontinuously to V = 2A/e. The PVC bears a strong

resemblance to those predicted by fully quantum mechanical theories of P.

In this report, we present our observations and their interpretation. Chapter Two is

a discussion of the quantum theory of the Josephson junction. The theory of (p is

qualitatively similar to that of an electron in a periodic crystal potential. We emphasize

measurable predictions of this theory, in particular the shape of the IVC. We also describe

the T = 0 phase transition predicted to occur as a function of Rn in Josephson junctions

with quasiparticle tunneling dissipation.

In Chapter Three, we describe the experimental methods used in this work,

concentrating on the technical advances which were crucial to its success: electron beam

lithography and dilution refrigeration. The Technical Reports of Marco lansiti [1988] and

Walter F. Smith [1989] contain additional information about these two important resources.

Chapter Four is a summary of the data, along with preliminary interpretation. Our

main piobe of the junction's physics is the IVC and the derived quantities I, I, and RO.

We show IVCs in zero magnetic field, in intermediate field as the step-like feature of Fig.

1 5 develops, and in fields large enough to drive the junction normal. In the latter case, the

data agree well with theories of N-I-N tunneling in the large charging energy limit.

With the data in hand, we present the major results of the "RCSJ-plus-line" model

in Chapter Five. In this new model, we include the frequency-dependent impedance of the

leads. As mentioned above, this accounts for the existence of Ro > 0, as well as the non-

zero minimum plateau of It(T) as T -+ 0. We develop a heuristic "two-frequency" model

of the junction and the leads, which yields simple methods to predict Ir and Ic for a junction

without the need for complex computer simulation. These predictions agree with our data,

as well as that from other groups.
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T=30mK 
Vg

0.4 H=0.2T
Rn=140k!2

0.2

no

-0.2

-0.4

-40 -20 0 20 40

I(pA)

Fig. 1.5: An applied magnetic field reduces El, producing a new type of hysteretic IVC.
The sample parameters are R= 140 kfl, C = I fF, T = 30 mK, and H - 0.2 T.
The voltage plateau occurs at Vb = 90±20 gV, while e/2C - 80 j.V.
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Finally, we summarize our results and provide suggestions for future research in

Chapter Six.



Chapter Two

The Quantum Mechanical Junctiont

In this chapter, we summarize the results of the quantum mechanical theory of a

superconducting tunnel junction. We concentrate on predictions of measured quantities,

specifically I-V characteristics (IVCs), which may be compared with experiment.

2.1 Quantizing the junction Hamiltonian

As discussed earlier, when Ej << Ec, it is possible that the classical junction

model has broken down, and quantum fluctuations of the phase are significant. Consider

first an isolated junction. As is the usual practice in quantum mechanics, we take the

classical Hamiltonian and assume an appropriate commutator between the coordinate and its

canonical momentum. This leads to

H= 2 -E cosq , (2.1)
2C

where Q = (2e/i) d/dp. The complementarity principle between Q and q is well known

from BCS theory [Tinkham, 1975, p. 24]. An important and delicate question arises

concerning proper boundary conditions for the problem, a point we address in section 2.5.

Ignoring this complication for the moment and assuming that (p is an extended

variable, this Hamiltonian is familiar from solid state theory, admitting Bloch state

t The number of contributors to the understanding of this problem and papers they have produced precludes

a complete accounting of the originator of each important idea. The work of K. K. Likharev deserves

special mention, however, and we take the opportunity to do so here.

I1
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eigenfunctions, ,Q) = eiqW2 eUq((P), where Uq(9p) = Uq(rp+21F). E,(q) is a band structure

with period 2e; the two limits of "tight-binding" (Ej >> Ec a e2/2C) and "nearly-free"

(Ej << Ec) bands are portrayed in Fig. 2.1. In the former case, the low lying bands are

nearly flat, made up of barely interacting harmonic oscillator states. The lowest band has

width [Schon and Zaikin, preprint]

= 16(E C )1/2 (- j 1/4 exp -8(.J 11}2 (2.2)X) 2EC E C

The first bandgap is hUp, and it remains at this value for all bands with E,, << Ej. In the

nearly-free limit, the bands are parabolic (E(q) - q2/2C) except near q = e, the edge of

the Brillouin zone; the width of the lowest band is about e2/2C, and the first bandgap has

magnitude Ej, while the higher ones decrease rapidly. We call q the "quasicharge"

(analogous to the crystal momentum in the band theory of solids), to differentiate it from

the real charge across the junction, <Q> = C<V> = CdE,(q)/dq.

The Hamiltonian for (p (2.1) is analogous to that of an electron in a one-

dimensional, periodic crystal potential [Ashcroft and Mermin, 1976, Chapter 12]. In this

related problem, an electric field E, which correspond to a force in a classical treatment,

causes the crystal momentum to evolve: dk/dt = eE/h. Similarly, adding a current bias to

(2. 1), which would be a force (washboard tilt) in the classical limit, leads to an equation of

motion for the quasicharge, dq/dt = I. We therefore associate q with the "external"

charge, the charge supplied to the junction by an ideal current source fq -f t dt'l(t') ) or

the charge polarization created by an external field [BUttiker, 1987].

To make this identification more obvious, consider the following Hamiltonian:

H = (Q+Qx)2 E coso , (2.3)
2C
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(a) 2Ej (b)B
2E,

E EjI EC

-ee-e e q

Fig. 2. 1: Bandstructure for the Hamiltonian (2. 1) with (a) EC/Ej =0. 1, and (b)

ECIEj = 2.5. These bandstructures are typical for junctions in the tight-binding and

nearly-free limits, respectively.
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where Q = (2e/i) did9q. We take Q, to be a c-number, and only 2x-periodic states V,,(P)

are allowed. The solutions to (2.3) are related to those of k2.1) by a gauge transformation,

and here Q is clearly the external charge. The total charge across the junction is the sum of

the external charge and the charge due to the junction response.

When Q. changes adiabatically (i.e. no interband transitions), the system dynamics

are simple. If the system begins in a given band, it remains in that band for all time.

Charge accumulates on the junction until Q , = e; at this point a Cooper pair tunnels across

the junction. If dQJdt = I is a constant, there will be a series of charging and discharging

events with frequencyf= 112e. These are known as "Bloch oscillations," because of their

relation to the like-named phenomenon in solid state physics [Likhare, and Zorin, 19851.

2.2 Ohmic dissipation

Weak dissipation may be inc',ided in this picture in a simple manner. For the

moment, consider a linear shu: t resistor R. In section 2.4, we present the case of a

quasiparticle shunt with subgap resistance RT, a more realistic scenario for our samples. If

Rs >> Ne2 (= 4.1 kW), we may use a perturbation treatment. The shunt provides a

channel for charge flow as well as fluctuations. If the system begins in a state Vi(Qo),

Qx(t) is governed by the Langevin equation,

dQx = l - n (t) , (2.4)
dt Rs

The expectation value of the voltage in the state V't,(Q,) is <V,> = dE(Q,)/dQ,. In(t) is the

noise current associated with Rs, with power spectrum
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S,(CO) f dtei(, (t)I,(-)) = 1(- ctnh-2kr (2.5)
2 r2 rRs 2kT(25

as required by the fluctuation-dissipation theorem.

The applied current I encourages a uniform evolution in Qx, which is resisted by

R. The noise current causes Q, to diffuse within one band and also admits interband

transitions that conserve Qx (see Fig. 2.2). The transition rate is (Likharev and Zorin,

1985]:

fS" (Qx = ~ (Qx) 1 (Q 1 2 pfAE,,,l(2x)}j (2.6)
I'S4e R' U~T~

where qn.,' = < V,,(Q,) I I V(Qx)> is an overlap integral, and

AE,,,Qx) = En<Qx)-En(QX) is the energy difference between the initial and final states.

Zener tunneling [Zener, 1934] may be Included with a certain likelihood at each Qx which,

when integrated, yields the usual Zener tunneling result:

F1
Pn8- = exp - 8hnEcI x  (2.7)

per Brillouin zone boundary traversal [Averin and Likharev, 1987]. In (2.7) Eg is the

interband energy gap (assumed small). It is convenient to define the Zener-breakdown

current 1z = 7reEg'18hEc, the current at which Zener tunneling through the first bandgap

has probability Ile.

We obtain I-V curves (IVC) by simulating (2.4). The system is described by a

master equation for an(Qx,t), the probability that at time t the system is in the state Vt,(Qx)

[Likharev and Zorin, 1985]:



16

Ec
2EC

Es
0,1

Cooper pair tunneling Z

-e e

Fig. 2.2: A diagram of the bandstructure of a junction with Ec >> Ej and an ohmic shunt
showing allowed transitions in q-space. Crossing the zone edge corresponds to the
transfer of a Cooper pair across the junction. At the zone edge, there also exists the
possibility of Zener tunneling to the next higher or lower band (PZ0_1,). Current

fluctuations due to the shunt resistor cause diffusion within one band (indicated by the solid
diagonal arrow near q = e/2), as well as transitions to higher (or lower) bands that
conserve q (the dotted arrow labelled P0o1 ). Adapted from Sch6n and Zaikin [preprint].
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da(Q) - da 1 d(a,) kT d 2a= -t +(2.8)
t dQ. Rs dQx Rs dQ 2

- X{[r (Qo + r' ,,(X , Q,)- (.)+ (o]a Q'

In (2.8) the first three terms on the r.h.s. account for the applied current, current flow

through the shunt resistor, and intraband diffusion due to Johnson noise, respectively. The

terms within the summation represent interband transitions, with the term containing the

factor a,,(Qx) accounting for transitions out of band n, and the other term for transitions

into band n. The voltage is calculated using <V(/)> = XV,(Q)ar(Q), once an equilibrium

form for a,,(Q,t) is reached.

This procedure will be inadequate if the properties of a single sample realization

differ radically from those of the ensemble average. For example, an approach in this spirit

would give a poor description of a classical, underdamped, RCSJ-model Josephson

junction under the influence of thermal fluctuations. On any single current sweep up from

zero, the junction switches from a V = 0 state to a V > 0 state at a stochastically reduced

critical current [Fulton and Dunkleberger, 1974], while the ensemble average has a

smoothly increasing V > 0 for all I > 0.

In Fig. 2.3 we show an IVC from a simulation of a junction with linear shunt

resistor R, and Ec >> Ej >> kT. There are two different regimes (labeled I and II) that

persist through the variety of models that have been proposed for these samples.

Regime I occurs near the origin and is characterized by large dV/dJ = R. Ignoring

the noise term in (2.4), we see that if V(Qx) = IR,, then dQxdt = 0, so that all the current

flow is through R. The maximum current consistent with this configuration is

1,,., = V,.,,/R3, where V,... is the maximum slope of E(Q) for the first band, so that

[Schbn and Zaikin, preprint]:
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1.0-

0.8-

S0.6- regime II

0.4-

exact

0.2

regime I simple model

0 1 2 3

IRsC/e

Fig. 2.3: IVCs for a junction with Ec >> Ej and an ohmic shunt R., ignoring Zener

tunneling. In regime I (0 < I < e/RsC), V = IRs. If we ignore Zener tunneling, as I
increases from e/RsC, more and more of the current is carried by Cooper pairs, so the
voltage decreases monotonically (regime II). We show here the exact IVC (from Sch6n

and Zaikin [1990]) and the IVC predicted by our simple model (section 2.3). The two

differ because the simple model ignores the deviation of the lowest band from parabolic

shape at the band edge.
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=e / RsC for Ej << Ec
, rAO / eR. for E>Ec (2.9)

where A0, defined in (2.2), is the width of the first band in the tight-binding limit.

In regime II (I > I,,,a), no static solution is possible, and Qx cycles through the

Brillouin zone. If we ignore interband transitions (a good approximation when I << Iz and

R. is large), this region has a negative differential resistance. At the zone edge, a Cooper

pair is transfered, and Q. goes from e to -e and then begins to grow again. This current

range is, therefore, host to Bloch oscillations. The voltage now varies in time through both

positive and negative values, so that the time-averaged voltage is much less than in the

static regime I. Finally at large currents (not shown in Fig. 2.3), Zener tunneling becomes

common. The system is driven to higher bands, resulting in a large voltage.

2.3 A simple model

We now discuss a simple model that reproduces some of the qualitative features of

the picture detailed above (see Fig. 2.4). We approximate the junction as an ordinary

resistor Rs, shunted by a capacitor C and a Josephson channel which instantaneously

transfers charge 2e whenever doing so reduces the system energy U(Q) = Q 2/2C, where

Q is the charge on the capacitor, that is, whenever I Q I - e. This model should be most

applicable in the limit Ej << Ec and T = 0.

For currents 0 < I < Ith = e/RsC, all the current flows through Rs, and the charge

on the capacitor is Q = CV = IRSC < e. Cooper pairs cannot tunnel, since a 2e transfer

would increase U(Q). The IVC is linear with slope R,; this corresponds to region I

discussed above. When I exceeds ,,, the capacitor charges and discharges periodically.

The average voltage is reduced from IRs, since for some times Q(t), and therefore V(t), is

negative. Simple calculations yield the oscillation frequency and V(I) = <V(t)>:



20

(a ) 

R s
C~j

(b) 01
2C

forbidden at T=0O allowed at T=0O

-e eQ

Fig. 2.4: A diagram of a simple model circuit and the operation of an idealized Josephson

channel. (a) the circuit, which consists of a capacitor, an ohmic resistor, and the Josephson

channel. (b) the energy of the circuit as a function of Q. The two bold arrows indicate

changes in Q of magnitude 2e, corresponding to having a Cooper pair tunnel via the

Josephson channel. For -e<Q < e, the transition causes the energy to increase and is

therefore forbidden at T=0. This same type of reasoning, with a quantized tunneling charge

e, underlies the Coulomb blockade of tunneling in an N-I-N junction.



21

AB = I + (2.10)

V(I) = Rs{I - 21,h In(I + (2.11)-it h  
( .1

The expression forfB given above is exactly that calculated using (2.4), while V(J) differs

by a factor of order one for currents I1h << I << 1z (see Fig. 2.3).

This model cannot account for the high current region mentioned above where the

junction voltage grows, and the main physics is the competition between Zener tunneling

(which, because of the decreasing bandgap with increasing band index, tends to drive the

system to ever higher bands) and interband transitions due to current fluctuations from R,

(which, by (2.6) favor transitions to lower bands for which AE,,,,,, < 0).

2.4 Quasiparticle tunneling dissipation

We now consider how to account for a quasiparticle tunneling shunt in the master

equation picture. In contrast to the continuous flow of charge in an ordinary shunt resistor,

the current through this channel consists of independent tunneling events of charge e. If

we assume that the tunneling current for a fixed voltage It(V) is known, then

F-(V)-F"(V) = I1(V)/e, where P (F +) is the tunneling rate with (against) the potential

difference. Detailed balance yields ]/F = exp(AE/kT), where AE is the (positive) energy

gained in the forward tunneling event, in this case eV. Taken together, we find

1-(V) = e I--t-E[exp- -d-l, (2.12)

ee~ ). U
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E
2Ec

-e 

0e

q

Fig. 2.5: A diagram of the bandstructure for a junction with a quasiparticle tunneling shunt

at T = 0, showing allowed transitions in q-space. Cooper pair and Zener tunneling are as

in Fig. 2.2. The quasiparticle tunneling events -0.1 and 1"+0,0, which change q by -e and

e, respectively, are indicated by arrows. Note that all quasiparticle transitions keep q in the

range -e 5 q ! e, indicated by the dotted lines. Adapted from Sch6n and Zaikin

[preprint].
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where AE± = ±eV is the energy difference for the voltage-biased tunneling process, and

we have assumed that It(-V) = -I(V).

For a Josephson junction with capacitance C and a quasiparticle shunt subject to a

current bias (in contrast to the voltage bias considered in the last paragraph), the relevant

tunneling rate is /'(Q), and a tunneling event changes the charge state of the system from Q

to Q±e. A microscopic analysis shows that the expression for Fy is unchanged, but the

energy difference is AE± = Ew,(Q±e)-E,,(Q), the difference in the band energies that solve

(2.1). It(V) is the full quasiparticle tunneling characteristic [Ben-Jacob, et al., 1983;

Sch6n, 1985]. Examples of allowed transitions are pictured in Fig. 2.5. In the following

discussion, we assume that only the subgap region is relevant, and that in this region

I(V) = V/RT.

We show a number of IVCs in Figs. 2.6 and 2.7. These curves can be split into

three distinct parts, and appearto differ only quantitatively from those for a junction

shunted by a linear resistor presented in section 2.2. The physics behind the IVC features,

however, has changed qualitatively, as described below for the case Ej << EC and T = 0.

In regime I (I < 0. 1 e/RTC) the IVC has high differential resistance. For small

current , assuming the system starts out in the lowest energy band (band 0), Q increases

until Eo(Q) > Eo(Q-e), at which point, by (2.12), a single electron can tunnel. The

tunneling is stochastic so there is a slight variable delay before it occurs (to be contrasted

with coherent Cooper pair tunneling which occurs without a lag in this theory). This delay

leads to a small positive time-averaged voltage V(I) - J1/2, instead of the linear

dependence found in section 2.2. When I is small, Q rarely reaches the edge of the

Brillouin zone, the Josephson channel is inactive, and all the current is carried by the

single-electron tunneling channel. In this regime, therefore, we find single-electron-

tunneling (SET) oscillations [Ben-Jacob and Gefen, 1985; Averin and Likharev, 1986].

This part of the IVC is followed by a negative-differential-resistance region

(Regime II, the "Bloch nose," 0.le/RTC < I << Ic,- Ize/RrC)1/2 ), as Q is driven
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more and more frequently over the edge of the Brillouin zone, and coherent Cooper pair

tunneling carries an ever larger part of the current. Bloch oscillations gain importance in

this current range, although SET oscillations are still present.

The nose is destroyed if, on the experimental timescale, the system is driven to

other bands under the influence of Zener tunneling (favoring motion to higher bands) and

quasiparticle tunneling (favoring transitions to lower bands). At T = 0, the transition rate

from the second band to the first, at values of Q not too close to the band gap (so that

AE± - e2IC), is roughly - = I/RTC. We see in Figs. 2.6 and 2.7 that if the nose is well

defined (e.g. the curve kT/E, = 0.001 in Fig. 2.7), V has fallen to 50 % of its peak by

I - 0.2e/RTC. At this current, the system traverses the Brillouin zone in a time 5RTC.

The probability of a quasiparticle tunneling transition from the second band to band 0 in

this time, preventing 7, ner tunneling through the second bandgap, is roughly

1-e-5 - 0.99, indepe- ,ent of RT. The stability of the nose, then, is determined by the

likelihood of 7ener tunneling alone.

Figs. 2.6 and 2.7 show that the current scale of the nose is 0. 1 e/RTC, so we

rewilte the Zener tunneling rate (from 2.7) as:

I f(E{'LJ e Yre'Rr(
1Z = ~exp EC !RT C 2 h(213

where fB = 1/2e is the Bloch frequency. Zener tunneling is negligible in the Bloch nose

region (I 0. le/R7C) if RT >> (Ec/Ej)2h/r 2e2. Consider the case of a junction with

realistic parameters C = I fF, RT = 100 MCI, and Ej/Ec = 0.1. At I = 0.2elRTC =

320 fA, the heart of the nose, we find fz - 10-98 se-1. This hypothetical sample would

be a good candidate for observation of the nose and Bloch oscillations.

In the master equation theory, Zener tunneling becomes important over a small

current range 81 (81 -e/RTC << Ic,) around c, - (Ize/RTC) 1/2 [Zaikin and
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1.0

RT=5. 2 kQ

0.8- RT= 5 2 kQ2

0.6-
L _._------ re gime III

0.4

RT=260 kQ-

0.2 
regime

RT=2"6 M£2

regime I

0.0 0.2 0.4 0.6 0.8 1.0

IRTC/e

Fig. 2.6: IVCs for junctions with Ej/Ec = 0.2 and different levels of quasiparticle

dissipation, at T = 0. At small currents there are SET oscillations, and the IVC has a high
dV/dl (regime I). The "Bloch nose" (regime II) is sharpest in the absence of Zener
tunneling and is washed out in junctions with small RT. At large currents (regime Il),
Zener tunneling dominates and the 1VC eventually nears that of a junction with E, = 0
(about the same as the curve with RT = 5.2 kW). Adapted from Sch6n and Zaikin

(preprint].
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0.6
kT/EC=5

0.4- kT/E =-

;I. kT/EC=0.001

0.2

0.0 0.2 0.4 0.6 0.8 1.0

IRTC/e

Fig. 2.7: IVCs for a junction with Ej/EC = 0.2 and RT = 260 kQ, at nonzero

temperature. The effect of higher temperatures on the Bloch nose is similar to that of

increased Zener tunneling (Fig. 2.6). Both phenomena cause transitions in q-space,

destroying the Bloch oscillations whose onset create the nose. Adapted from Sch6n and

Zaikin [preprint].
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Kosarev, 1988]. The dc voltage rises rapidly here (regime III), from V(I) << IRT to close

to the value which it would have in the absence of the Josephson effect, prompting some to

identify it with the experimental I. At large currents, the junction IVC is the same as that

for a normal tunnel junction with tunnel resistance RT, V(1) = IR'+e/2C, the second term

being the voltage offset due to the Coulomb blockade.

2.5 The choice of wavefunctions

The choice of wavefunction symmetry is subtle for the Hamiltonian of (2.1),

H = Q2/2C-Ejcos (. Since H[i(qp)] = H[1(p+2r)], we have the following possibilities

for boundary conditions on the eigenfunctions:

I ((p + 2 r)[ 2 = I V(9)12  "particle in an extended potential"

V(qp+ 2ir) = V(qp) "particle on a ring" (2.14)

gV(q + 4,r) = y(9)) "quasiparticle tunneling"

The first choice, familiar from the band structure of solids, admits all Bloch states,

and applies if the sites (p and (p+2zr are equivalent. The second allows only Bloch states

with q = 2ne, with n an integer, and entails the stricter assumption that (p and 9+27r are

identical. The third allows Bloch states with q = ne. It arises, as we discuss later, when

quasiparticle tunneling is the source of dissipation. A term proportional to cos (9/2) then

appears in the effective Hamiltonian, allowing the possibility of 4;r periodicity in p(p).

If we consider the Hamiltonian H = (Q+Q/)2/2C-Ejcos (p (see (2.3)) and make the

substitution V,.Q, ((p) = exp(igQx / 2e) V,, (9), the second and third choices in (2.14) may

be generalized. The three possibilities now allow states with all q, q = -Qx+2ne, and

q = -Q,+ne, respectively, where n is an integer.
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The appropriate boundary condition is dictated by the experimental set-up. If

continuous charge flow may occur across the junction on the experimental timescale, then

all values of Q. must be admitted. If only quasiparticle tunneling contributes to charge

relaxation, the 41r periodicity option is indicated. From the experimenter's point of view,

the master equation approach generates IVCs with roughly the same shape, whether the

dissipation is due to continuous or discrete charge transfer (see Figs. 2.3, 2.6, and 2.7).

We also mention the fact that, for any single junction sample (i.e. a junction attached

directly to leads), transmission line effects cause the leads to present a predominantly real

(that is, resistive) impedance at high frequency, which acts, at these frequencies, as a

channel for continuous charge transfer.

2.6 Phase transitions in the quantum junction

The master equation approach outlined in sections 2.2 through 2.5 incorporates

dissipation perturbatively. A separate line of research incorporates non-perturbative

damping by building on the, pioneering work of Caldeira and Leggett (CL) [1981]. CL

modeled dissipation by an ohmic resistor, Rs, in a Josephson junction as a coupling of (P to

an infinite set of harmonic oscillators. The phase is coupled lightly to each single

oscillator, but the effect of the coupling to all the oscillators may be an arbitrarily large

dissipation level. The partition function of the system of junction plus oscillators is written

as a path integral of the Lagrangian over all the relevant variables. For linear coupling

between q, and the bath coordinates, CL noted that the latter may be integrated out exactly

[Feynman and Hibbs, 1065, section 3.10]. The one-dimensional nature of the problem is

thereby restored, but the new effective Lagrangian is nonlocal in time:
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Sef,[Dq( T) f fd ( _)2 - E, cos ] (2.15)

+j fdr fd'a(v- r')[ (r)- qp(f")2 , where
0 0

a27 (/ h/3) 2  (2.16)
a(r) = 8,e 2Rs sin2 (rr/ A/3)

Starting from a microscopic theory, Ambegaokar, Eckem, and Schbn (1982]

considered a tunnel junction between two BCS superconductors. Assuming that the gap

was much larger than all other energy scales [e.g. eV, kT, A/RC], and that for V << 2Ae

the quasiparticle characteristic was I(V) = VIRT, they found a different effective

Lag-angian,

a C °hp 2  1o~p

" fd j-1-(-- ) - Ecos q (2.17)
0 L2 2e dr' j

+- fo dL ,( - ) 2') , where2o 0

2 (7r / /3)2 (2.18)
a(X)= 2,re2RT  sin2(r / hp)

Important aspects of the action in (2.17) are:

(i) the capacitance C* = C+3C, where 8C = 3xr/A32AR^, has been renormalized

by quasiparticle tunneling. As illustrated in Fig. 2.8, this may be thought of as the

imaginary part of the quasiparticle response, dictated by the Kramers-Kronig relations.

The presence of the gap yields a real response which, taken alone, violates causality, in

contrast to the frequency-independent response of an ordinary resistor [Hu, et al., 1990].
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(a) G(co) (b) B(cO)

1/R 1/R

i iBio/)B 
( 0

-2Ath 20 -2h 2Wh (0

(C) GQ(co) (d) BQ(CO)

1/Rn  I/Rn

Fig. 2.8: The real and imaginary parts of Y(ow) = G~)+(),a causal small-signal
response function, are related by the Hilbert transform [Bracewell, 1978, p. 272]:

B~w) G=o1 ) dw' and G((A) f ~ B(O)') do' .
I ,- 0) r_ (J)- (

For a resistor, G(o)) = hR (a), so B(co) = 0 (b). A good approximation to the in-phase
response of a quasiparticle tunneling channel at T = 0 is GQ(O)), shown in (c). The
Hilbert transform of this function (d) is linear near the origin, so the low-frequency
response is capacitive, B(o)) = iw8C+8G'Io1)A) 3 , where 8C = h/~rR,,A in this
approximation. A more thorough analysis [Eckern, Schbn, and Ambegaokar, 1984] yields
8C = 3,rhl32R,4.
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(ii) the term in the action resulting from the coupling to the environment now goes

as cos e/2, where 6 = qp(r)-(pr'), instead of 92, as in (2.15). This new 41 periodicity in

q) reflects the e-quantized nature of quasiparticle tunneling.

Both these effective Lagrangians have a phase transition at T = 0 as the dissipation

level is increased from zero. For an ohmic shunt, the phase transition occurs at

R, = h/4e2 = 6.4 kQ, independent of Ej/EC. When R, > h/4e2 (weak dissipation), (P

can tunnel through the washboard potential barriers. Mathematically, <j(p(r)-

(0)]2> -+ oo for large Tr. When R, < h/4e2 (strong dissipation), quantum fluctuation are

suppressed, and (p is localized in the potential: <[p(r)-q)(0)] 2> is finite for ' --

[Schmid, 1983].

When quasiparticle tunneling provides the dissipation, the situation is more

complicated. Since the action is periodic under shifts of 4r (instead of 21r, as is the case

with Josephson tunneling only), the energy bands have the symmetry E,(Qx+e) = E,(Q,).

The Brillouin zone is now only half as large, extending from Q. = -e/2 to Q" = e/2, but

the number of energy bands is doubled (see Fig. 2.9).

The energy bands are distorted by quasiparticle tunneling to a degree dependent

upon a, = h/lr 2e 2RT - 2.6 kfl/RT. When at = 0, the bands cross at I q I = e/2.

Nonzero dissipation causes the bands to be tangent there. As at increases, the energy

bands flatten, and at at = 2 the bands are degenerate over a finite range of q, which starts

at q = +e/2 and expands towards q = 0 as .xt grows. Fig. 2.10 shows how the value of

at at which the bands become degenerate is a function of both q and EJ/Ec. The deformed

energy bands may then be included in a master equation to predict IVCs for these junctions.

A flatter band structure leads to an IVC with a less-pronounced Bloch nose.

Moreover, the size of the ac voltage produced by the Bloch oscillations (proportional to the

maximum slope of Eo(Q) is also decreased. Thus, strong quasiparticle dissipation destroys

the features associated with the quantum mechanics of p.
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-3e/2 -e/2 e/2 3e/2 q

(b) (C) (d)

Fig. 2.9: Energy bands for a junction with quasiparticle tunneling dissipation. (a) the

energy bands. The number of bands has doubled, and the Brillouin zone has collapsed to

-e/2 5 q!5 e/2 (dotted lines). The bands intersect at the zone edge, but are distorted to a

degree dependent on the strength of the dissipation. (b), (c), and (d) are close-ups of the
zone edge. (b) at = 0. The bands cross at I q I = e/2. (c) 0 < at < 2. The bands are

tangent at the zone edge. (d) at > 2. The bands are degenerate over a finite region of the

Brillouin zone, which grows with at. Adapted from Guinea and Schdn, [ 1986].
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Fig. 2.10: The phase diagram for the superconducting tunnel junction with a quasiparticle
tunneling shunt. The critical value of the quasiparticle dissipation, a4., depends on EjiEc
and q. In region A, the lowest two energy bands are degenerate only at I q I = e/2. In

region B, the two lowest bands are degenerate in a finite range of q, near the Brillouin zone

edge. Finally, in region C the two lowest bands are degenerate over the full Brillouin zone,
-e/2 : q < e/2. The two curves show how atc varies with E,Ec for the fixed values

q = e/2 and q = 0. The like curves for intermediate values of q lie between these two, in

region B. Adapted from Sch6n and Zaikin [preprint].
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2.7 Summary

In this chapter, we have outlined some of the consequences of quantum mechanical

fluctuations of the phase in superconducting tunnel junctions. The important results are:

(i) the IVC is strongly altered from that when the phase is governed by the classical

RCSJ model. Specifically, the "Bloch nose" develops for currents I < e/RTC. The

voltage scale of the nose is

fe/4C Ej << Ec
Aole Ej >> Ec (2.19)

when the effects of dissipation, Zener tunneling and temperature may be ignored. Here, AO

is the width of the first tight-binding band, defined in (2.2). Bloch oscillations exist in the

region of negative differential resistance, and, when the dissipation is due to quasiparticle

tunneling, SET oscillations occur for small currents.

(ii) in the presence of sufficiently strong ohmic or quasiparticle-tunneling

dissipation, the junction undergoes a phase transition. For dissipation larger than a critical

level, quantum fluctuations are suppressed, smearing the Bloch nose and reducing the ac

voltage associated with the Bloch oscillations.



Chapter Three

Experimental Techniques

This chapter describes how the samples used in this work were made and measured.

Section 3.1 outlines the lithography and deposition processes [fully described in

Appendix 1] used to fabricate 0.04 .m2 junctions, while in section 3.2 we present the

techniques used to measure the samples at dilution refrigerator temperatures.

3.1 Sample Fabrication

By the summer of 1984, it was clear that a technical advance was needed to

continue the Tinkham lab research into the physics of ever smaller superconducting tunnel

junctions. Danchi's work on junctions with 1 .m dimensions [1983] pushed optical

lithography near its intrinsic limit due to the wavelength of the exposing light. Fortunately,

research into submicron patterning techniques had been conducted by workers at many

laboratories. Hatzakis' investigations of PMMA electron beam resists [1971, 1975] had

shown the feasibility of linewidths below 100 nm, representing a potential decrease in

junction area by two orders of magnitude. Junctions of this size had been fabricated

[Howard, 1979], but systematic research into their properties had yet to be done.

Theoretical considerations indicated that novel physics would be found in samples

of area (300 nm)2 , where Ej - Ec - I K for a typical critical current density and

dielectric constant. Hints of these phenomena appeared in the pathbreaking work of Akoh,

et al. [1986], the first to observe the Ro and reentrant I, phenomena. Excited by these

developments, we set out to build a submicron fabrication capability at Harvard.

35
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3.1.1 Contact pads

We found it convenient to pattern the gross structures on the chip with

photolithography before moving to electron beam lithography (EBL) for the submicron

features. The contact pads frame an area of about (80 .tm)2, matched well to the field of

view of the SEM at a magnification of 1000x. The pads need to have high electronic (and

thereby thermal) conductivity, adhere well to the oxidized silicon substrate and form no

oxide even after prolonged exposure to atmosphere.

The combination of Au pads with a thin Cr underlayer has all these attributes. The

Cr acts to improve the adhesion of the pads. They routinely survive a vigorous cleaning

prior to EBL, including 30 minutes in boiling photoresist stripper and a total of 20 minutes

ultrasonic cleaning in various solvents. The choice of Au is prompted by its high

conductivity and lack of a natural oxide. We evaporated about 50 A Cr followed

immediately by 450 A Au. Thinner layers of Cr were used by other members of this

group; it appears that even 25 A Cr forms a relatively smooth film. When making the pads,

it was essential to fill the cold trap in the diffusion-pumped evaporator; the Au peeled away

from the Cr in bilayers made with the cold trap empty. We believe that when the cold trap

is not used, pump oil contaminates the Cr surface during the time between evaporations,

leading to poor Au-Cr adhesion.

When using such a two part process, it is of great importance that the edges of the

contact pads be smooth, so that the film evaporated after EBL will not break as it passes

from the contact pad onto the bare Si. To achieve this, some undercut is needed in the

photoresist pattern which defines the contact pads (see Fig. 3.1). We used a simple

chlorobenzene technique [John Clarke, private communication] that gave undercut too

small to see with an optical microscope, but sufficient to give easy liftoff and edges smooth

enough for the Sn films. We should point out, however, that the Sn films were rather thick

(two layers of about 700-1000 A each). It may be that our pads were not suitable for use

with extremely thin films. Due to this concern, Walter Smith of this group used a three-
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deposited metal/
lift-off (A)

Substrate F _

7rssts r~ss lift-off lo(B)

Fig. 3.1: A vertical resist profile (A) can be coated by metal if the deposition process is not

fully collimated, leading to a film with rough edges. This can tear a film deposited later.

The undercut profile (B) gives a smoother edge.



38

layer photolithographic process to pattern pads for his research on quantum conductance

fluctuations in 200 A thick Pd-Si wires [1989].

When making pads, we found that some masks, which showed no obvious

imperfections, could be unsuitable for patterning even such large structures (minimum

feature size 40 .Lrm). The use of one particular mask led to well reproduced pad sets

interspersed with pad sets that were severely flawed, even when the mask was thoroughly

cleaned and extreme care taken to achieve good contact when using the mask aligner.

Eventually we discovered that using a different mask resulted in essentially perfect pad sets

over the entire surface of a 2" wafer with little special effort. This problem was probably

caused by a large scale warp in the original mask. Presumably, tile mask had this

imperfection when delivered by the supplier.

We also experimented with methods to pattern the contact pads in the electron resist

that would eventually define the sample as well. We used a deep ultraviolet (DUV) source

[Oriel, 500 W] to expose the contact pad pattern in the bilayer electron resist. We then

developed the sample and rinsed it thoroughly. We could continue with EBL after this,

using the edge of the resist as an alignment mark in the SEM. Eventually, this method

would lead to both pads and sample made of Sn.

This method had the advantage of needing only one evaporation to make the

sample. DUV lithography is relatively simple, the only major changes from

photolithography being the use of a DUV source [-$15,000], and quartz masks instead of

standard soda lime glass which absorbs at DUV wavelengths. This second difference

involves a cost increase from $3 to $60 per mask. An additional complication is the danger

of DUV radiation. Although any pair of glasses will protect the eyes by attenuating the

DUV, this wavelength region damages human skin; even the small amount of light that

leaks out through a crack in the lamp housing once the protective cover is removed can

cause a "sunburn" after about 10 minutes exposure at close range.
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To provide good contact between mask and sample during DUV exposure, we used

a vacuum chuck designed by Martin Forrester and built by the Harvard shop. The chuck

(Fig. 3.2) is simple, and provides excellent contact; with it we can achieve 2 g±m linewidth,

although there is no alignment ability.

3.1.2 Electron beam lithography: resist considerations

Once we have successfully fabricated a set of contact pads, EBL is used to create

the superconducting tunnel junction itself. We use an angle-evaporation technique

pioneered by Dolan [1977], forming the junction with two evaporations at proper angles to

the substrate. The technique demands an undercut resist profile with a "suspended resist

bridge" (Fig. 3.3). This requirement is a stringent one which results in larger-than-optimal

linewidth, as discussed below.

Sn tends to ball up on oxidized Si, forcing the use of moderately thick (70 nm or

greater) films to produce continuous lines. The rule of thumb for reliable lift-off is that the

resist structure be three times as thick as the deposited metal; a PMMA system of about 500

nm thickness is necessary. We used a bilayer with PMMA(MAA), a PMMA copolymer, as

the lower layer (about 500 nm thick), and PMMA (about 100 nm thick) as the top layer [see

Appendix 1]. As usual, the top ("imaging") layer should be as thin as possible, since the

minimum linewidth achievable in a resist is roughly the layer thickess.

In this resist system, the lower layer is more sensitive to electrons, that is, in a

threshold model of resist development (where a volume with more than some exposure

level is totally disolved by the developer, while one with less is totally unaffected), the

minimum energy dose needed to produce 100 % resist loss is smaller for the lower layer

than for the top layer. If the exposure profile due to the incident beam is roughly Gaussian,

then a wider hole will be made in the lower layer than in the imaging layer (see Fig. 3.4).

This sensitivity-gradient trick is often used in multilayer resist schemes for obtaining an
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Channel connected
to vacuum port

Rubber membrane

Hole to atmosphere
(under membrane)

3"x3" mask
Cr-on-quartz

2" Si wafer coated
with two layer PMMA
resist system.

Fig. 3.2: The DUV contact printing chuck.

Top: The chuck. Bottom: Mask and chuck with wafer in position for exposure.

A vacuum space between the mask, the baseplate, the channel, and the rubber membrane is

evacuated via the hose barb. The pressure difference between this volume and atmosphere

drives the membrane into the wafer, and the wafer into good contact with the mask.
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Image in bottom Two-layer resist system Image in top layer
layer viewed from top

Cut along this
line and look

( edge on from
- -, - - -- to see (B).

(A)

First evaporation direction

Suspended resist -SnOx
bridge

First Sn layer

Substrate
(B)

Second evaporation\
direction

[__ _ Completed junction

-.. Second Sn layer

(C)

Fig. 3.3: (A) Exposing a line with a gap in the top layer (solid line), leaves a continuous

channel in the lower layer due to its extra sensitivity (dotted line), creating a suspended

resist bridge. If we cut along the line of the arrows in (A) and look at the substrate

edge on, we see the bridge (B). Two evaporations at angles to the substrate create

the tunnel junction (C).
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Exposing agent (light, electrons, etc.)

Top (imaging) layer

Bottom (undercut) la er

Substrate

Intensity

top layer threshold

I !iX
II

bottom layer threshold

Ix

III
I

II

Fig. 3.4: The combination of a more sensitive bottom layer and a Gaussian exposure

profile leads to an undercut resist profile. Any region in the iop (bottom) layer exposed

more than the top (bottom) layer threshold is dissolved by the developer. The opening in

the bottom layer is therefore larger than the opening in the top layer.
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undercut profile, but it is not the only approach. For an alternative, see the discussion of

"canyon lithography" in section 3.1.4.

If we could expose an electron resist at a single point, there would be a "proximity

effect," i.e. energy deposited in regions which were nominally unexposed. Electron

scattering in the resist itself generates this cross exposure. As the electron team enters the

resist, it creates a forward beam of secondary electrons which exposes surrounding

regions. We model this as a slight increase in the beam diameter. A second important

process is backscattering of electrons from the substrate, which can be suppressed by using

a substrate that is transparent to electrons, such as a SiN membrane [Broers, et al., 1978].

The combined effect of these two proc sses is a current density J, a distance r from the

exposure point, modeled as a double-Gaussian [Wittels, 1980]:

J(r) = I a22ear2 + b1 2e-2r2} (3.1)

In (3.1), 1/a and 1/3 are the width of the incident and backscattered beams respectively, b

is the fraction of electrons backscattered, and I is the beam current. As the electron energy

increases, both I1/# and b increase. The net effect is to reduce the effect of backscattering

with increasing incident energy, since although the total number of backscattered electrons

increases, the total area exposed increases more, and the dose (energy/cm 2) decreases.

Ordinarily we decrease the backscattering to minimize the linewidth. In our

samples, however, backscattered electrons help create the undercut. An incident beam

energy of 35 keV, optimal for the electron optics of our SEM, led to insufficient undercut.

12 keV electrons produced an undercut profile that could be inspected with an optical

microscope. This allowed junction yields approaching 90 %. Using a 12 keV source,

however, increased the minimum linewidth to 200 nm from the 100 nm obtained at 35 keV.
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3.1.3 Electron beam lithography: the EBL system

The SEM beam is controlled with two voltages, one for the X direction and one for

Y. When imaging, these voltages are provided by the scan generator module on the SEM

control panel. Most SEMs have a three-pin port where an outside source can provide these

two voltages whenever the third pin is in some specified voltage state (e.g. grounded). We

use just this capability to do the EBL.

The system used to control the electron beam of the SEM is sketched in Fig. 3.5.

We use an IBM Instruments 9000 computer4 and homemade digital-to-analog conversion

(DAC) electronics to drive the electron beam of a JEOL 35U scanning electron microscope.

The computer also controls the beam blanker. The DACs have 16 bit resolution, of which

15 are used for beam writing. At a magnification of 1000x (standard for high resolution

writing) the pixel size is about 50 A, significantly less than the size of the beam. The

minimum linewidth made in PMMA on a Si substrate at Harvard is 100 nm. We have also

written photolithographic masks with 2 gm critical dimension at a magnification of 100x,

corresponding to a I mm2 field of view [Forrester, 1988].

The heart of the system is the EXPOSE program, written by Dr. Horst Rogalla, a

visitor to the Tinkham group, now at the University of Twente, The Netherlands. The

distinguishing feature of this program is that only after exposing one point are the

coordinates of the next point calculated; most other systems calculate the coordinates of all

the points, Inad them into a fast access memory, and only then expose the pattern. The

program has a maximum output rate of I MHz. The maximum exposure rate is currently

limited by the beam deflection coils in the microscope, rather than the software.

Clearly, the weak link in this system is the computer itself. IBM Instruments no

longer exists, and there is no service support for the machine. The change to an IBM PC

§ This machine is obsolete, but uses a Motorola 68000 processor as does the more modern Macintosh.
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JEOL 35 U Scanning Electron Microscope

IBM Instruments 9000
EXPOSE pattern generator

electron source

electron optics

e bnDigital-to-analogbeam blanker electronics

electron optics

beam deflection
coils

PMMA-coated

substrate

Fig. 3.5: The Harvard electron-beam lithography system. The IBM Instruments 9000
computer drives DAC circuitry that controls both the beam position and the beam blanker.
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or Macintosh should be a high priority. Today the lab is vulnerable to a failure of the IBM

Instruments computer, which could bring several research projects to a standstill.

When patterning with the EBL system, proper focusing of the SEM near the writing

region is crucial. A useful trick exploits the natural contamination of the vacuum system by

the diffusion pump to image the electron beam. If the beam is placed in "spot mode" for

several minutes at a high magnification (e.g. 60,000x), a white dot is visible when the full

area scan is restored. This object is "contamination resist," pump oil carbonized by the

electron beam [Broers, 19761. When the beam is focused well, this spot is about 100 nm

in diameter and circular. If the astigmatism is poorly adjusted, the spot is an ellipse. The

spot can even have three lobes, indicating very poor astigmatic adjustment indeed. If no

spot forms at all, the beam is probably not focused on the resist surface. An added benefit

of this process is that the small, round spot can be used to improve the focus further.

It is unclear how the size of the spot compares to the true beam size. The longer

the beam remains in one place, the larger is the resultant spot. The spot is imaged easily,

which seems impossible if it is the same size as the beam. The specifications of the SEM,

moreover, give the optimum beam diameter as 7.5 nm. Our inability to pattern lines

smaller than 100 nm could indicate that the beam is not ideal, since other groups report

lines as small as 40 nm in PMMA on thick substrates [Mackie, 1985; Rooks, 1987]. It is

likely that the purchase of a new SEM will lead to better EBL at Harvard.

3.1.4 Tin deposition

The evaporation process is detailed in Appendix I. All the samples in this report

were made of Sn, largely for historical reasons; this material has been a mainstay for

junction fabrication by this group for 15 years. Tin has several advantages for the

fabrication of small geometric capacitance tunnel junctions. First the native oxide has a

relatively small dielectric constant, e = 6E0 [Wang, 1978; Danchi, 1983], to be compared

with that of NbOx (e = 30e 0) [Basavaiah, 1976] and A120 3 (C = 8 ej) [Gurvitch, 1983].
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Secondly, since Tc = 3.8 K, we can measure these junctions in a standard helium cryostat

and still reach temperatures as low as T, /3.

The major disadvantage of Sn is its inability to cycle thermally. The samples were

invariably shorted out after the second cooling. Samples that sat at room temperature for

periods longer than a day also were shorted, so we cooled the samples as quickly as

possible once the evaporation was finished, typically within 12 hours. We infer that Sn is

under stress after evaporation, and that this stress is relieved by thermally-activated

needling, puncturing the fragile oxide barrier. Samples were stable for weeks at liquid

nitrogen temperature and indefinitely below 4 K.

It is clear that Al is a better material for continued research. Its slightly higher

dielectric constant is offset by its ability to cycle and to form continuous films at smaller

thicknesses, allowing thinner resist structures and better minimum linewidth. Once EBL at

Harvard is capable of (70nm) 2 junctions, even a A120 3 barrier will result in C - 0.2 fF,

so that EC - 5 K.

3.1.5 Areas for future work

We take a moment to consider promising avenues for improving lithography at

Harvard. Lift-off samples with 40 nm linewidth have been obtained using a two-layer

structure with 150 K molecular weight (MW) PMMA as the bottom layer and 496 K

PMMA as the top layer [Mackie, 1985; Rooks, 1987]. As usual, the bottom layer is more

sensitive to electron exposure. The entire structure is extremely thin (less than 200 nm total

thickness), and would require the use of Al as the junction material. Due to its parallel

nature, X-ray lithography would be useful for more complicated structures like large tunnel

junction arrays.

With the help of some talented undergraduates, we investigated fairly deeply a

novel form of patterning known as "Canyon lithography" (C-L). Most conventional

schemes for generating undercut have the weakness that both the image line and the
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undercut are produced by the same physical process in layers with similar material

properties. Therefore, the goals of minimum linewidth and maximum undercut are at cross

purposes. As noted above, this limitation led to the compromise of 12 keV electrons and

the consequent linewidth doubling. C-L, detailed in Appendix I, avoids this problem by

using a metal imaging layer and polymer undercut layer, whose vastly different properties

allow linewidth and undercut to be independently optimized [Dolan, 1983].

The best results with C-L include a 30 nm Au line and (60 nm) 2 Au-Au

"junctions." These were all made without electrical contacts, however, precluding

measurement of their transport properties. The technique is clearly promising, but has the

drawbacks of more complexity than the standard expose-develop-metallize process (the

angle evaporation and reactive ion etch steps), and lack of good reproducibility. This latter

problem is due to the short exposure times in C-L, used to achieve intenticial

underexposure of the resist. This requires an EBL system with adequate "settling time"

and "blanking" capability to ensure accurate, reproducible exposure. Our system has a

programming bug in the "settling time" subroutine, so that only the first point of any

exposure has a settling time, and the blanker is an inductive device rather than the faster

electrostatic (capacitive) variety.

Finally, we note that Al structures as small as 20 nm have been made using AIF 3, a

self-developing metallic resist [Kratschmer and Isaacson, 1986]. Still in its infancy, this

technology will certainly be exploited for transport research in the near future.

3.2 Measurement at Dilution Refrigerator Temperatures

Using a dilution refrigerator for the measurements presented opportunities and

technical challenges. The ability to reach temperatures as low as 20 mK held the possibility

of observing new phenomena, and the need to be well below Ecik - I K argued against a

standard pumped-liquid-helium system or even a 3He system. We could also investigate
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the normal state properties of the junctions with the 7 T superconducting magnet attached to

the mixing chamber.

These advantages come at a price. The difficulties of achieving such low

temperatures, measuring them accurately, and controlling the temperature to an acceptable

precision are well known. As described below, measures not needed in 4He cryostats are

demanded. The small critical currents of the junctions and the low voltage levels on the Ro

branch of the I-V curve also call for careful noise reduction techniques.

For additional discussion of the dilution refrigerator shared by the Tinkham and

Westervelt groups at Harvard, the reader is referred to the Technical Reports of Marco

Iansiti [1988] and Walter F. Smith [1989].

3.2.1 Top-loading

An added convenience of the refrigerator is its top-loading ability. We mount the

sample on the loading slug (shown in Fig. 3.6), with electrical contact made via pressed

indium dots. The slug is screwed with a left-hand thread onto the end of the top-loading

dipstick, a long metal tube made of two coaxial tubes joined at the end where the slug is

attached. The dipstick is introduced into the inner vacuum region surrounding the mixing

chamber. Liquid helium may be pumped from the refrigerator's helium reservoir, down

the dipstick's central tube and back out the outer tube, thus cooling the slug to near 4.2 K.

The bottom of the slug is a right-hand screw. Turning the dipstick clockwise screws the

slug into the bottom of the copper tail fastened to the mixing chamber. Once the slug is

tight, it is unscrewed from the dipstick by continuing to turn the latter clockwise. Eight

spring-loaded contacts provide electrical continuity. With this setup, we can remove one

sample, introduce a new one and cool to millikelvin temperature, all within a few hours.
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Fig. 3.6: The top-loading slug.
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3.2.2 Temperature measurement and control

For a detailed overview of the temperature measuring system in the shared dilution

refrigerator at Harvard, the reader should see the Technical Report of Walter F. Smith

[19891. Two thermometers cover the temperature range 10 mK-6 K. The first is a

commercially calibrated germanium resistance thermometer (Lake Shore Cryotronics), used

for temperatures between 6 K and 250 mK. Below 250 mK, we use Speer carbon

resistors, heat-sunk to the mixing chamber by milling a flat to expose bare carbon, which is

pressed firmly against the mixing chamber with a piece of greased cigarette paper between

the two to provide electrical isolation. The leads to all resistors are wrapped around heat-

sinking spools at the mixing chamber, as well as the 50 mK, 600 inK, and 1.2 K stages of

the refrigerator. The carbon resistors are calibrated at the start of each run With a National

Institute of Standards and Technology (NIST) fixed point thermometer consisting of 5

superconductors with known T,.

Despite the precautions taken to heatsink the carbon resistors to the mixing

chamber, we noticed a slow upward drift in their resistar'-e (i.e. a slow downward drift in

the electronic temperature) with the mixing chamber held at a constant low temperature.

For examiple, we used the center of the NIST 23 mK superconducting standard as a

regulation point and found that overnight the resistance of one Speer thermometer increased

from 35 Wf2 (after about 30 minutes of equilibration) to 63 kLQ, corresponding to an error of

5-10 mK. An initial, fast settling to near thermal equilibrium was followed by a much

slower relaxation to a true 23 mK state.

We solved this problem by using a new type of ruthenium oxide (RuO2) resistor

thermometer [Li, 1986; Love, 1987] which has the dual advantages of easy, reliable

heatsinking and small magnetoresistance. All thermometers are mounted in the cancellation

region of the 7 T magnet which is centered on the mixing chamber, but there is still

uncertainty about their reliability in high field. The RuO2 thermometer is covered by a thin

insulating glass. Once leads were attached to the resistor and covered with GE varnish, we
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placed the resistor on the mixing chamber and slathered silver paint over all its exposed

surfaces and the nearby part of the mixing chamber to make thermal contact. The resistor

comes to equilibrium in 15 minutes at 23 mK, and its resistance does not change in the

overnight test. In addition, its resistance at a given temperature is extremely stable from

run to run: the calibrations of two runs differed by less than 10 % for T < 100 mK, and

less than 3 % for 100 mK < T < 300 mK.

The mixing chamber temperature is regulated with an Oxford Instruments

temperature controller with proportional-integral-derivative [PID] feedback. One

innovation of this research is a high-temperature regulation scheme found to work well up

to 6 K. This technique extends the dynamic range in temperature to nearly 3 orders of

magnitude.

For T > 1 K, the refrigerator has, in some sense, too much cooling power. If all

the 3He in the mixture is circulated through the dilution path, so much heat must be applied

to the mixing chamber to reach 1 K that the mixture is vaporized, resulting in unstable

operation. Above 0.8 K, 3He and 4He do not phase-separate in the mixing chamber, so no

dilution occurs; the cooling is provided by 3He gas (and at higher temperatures 4He gas)

cooled to 1 K by the condenser. The trick at high temperature is to have enough mixture

circulating to provide adequate cooling power, but not so much cooling power that the

temperature oscillates wildly.

To accomplish this, we extract nearly all the mixture from the unit (both 3He and

4He), and then add mixture back in "pipefuls," using a segment of pipe that connects the

dumps to the dilution path. About 10 pipefuls (roughly 50 cm 3 at 500 mbar and room

temperature) provides 1 mW of cooling power and regulation to 10 m.K at 1.5 K. The 6 K

maximum temperature is only where the GRT calibration becomes unreliable. With proper

thermometry, it might be possible to extend the useful temperature range in the refrigerator

to 20 K, a factor of 1000 from minimum to maximum.
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3.2.3 Electrical set-up

The measuring set-up in the refrigerator was designed to minimize extraneous

electrical noise. The leads were 40 gauge copper wire made into ribbon cables. The cables

were wrapped around heatsinking posts at the mixing chamber, and the refrigerator's

50 mK, 600 mK and 1.2K stages. Each lead was interupted at the loading slug by a 5 kIQ

metal film resistor, which combined with the roughly I nF distributed capacitance of the

leads to form a low-pass filter with measured cut-off frequency below I kHz. Shielded

twisted-pair cables were used at room temperature to minimize pick-up further. All current

supplies were homemade and battery powered, and the data were taken using X-Y chart

recorders to reduce electrical noise. PAR 113s were used to amplify all dc signals. The

dV/d/ measurements were taken with a PAR 124 lock-in amplifier.

We made no special effort to reduce noise at frequencies above I GHz; in

particular, we did not install microwave filters [Martinis, et al., 1987]. The measured

attenuation at high frequency is still relatively high, a minimum of 60 dB fort > 1 GHz

and more than 90 dB for f> 10 GHz.



Chapter Four

Experimental Results

In this chapter, we discuss our measurements of small-geometric-capacitance,

large-normal-resistance Josephson junctions. We start with a description of the current-

voltage characteristics (IVCs) in zero magnetic field. We present in section 4.2 the

temperature dependence of the critical current Ic, the retrapping current I,, and the

anomalous low-voltage resistance Ro. In section 4.3, there is a discussion of novel IVCs

thai: appear when a magnetic field, alone or in combination with an ac signal, is applied to

the sample, and the Coulomb blockade effects that arise when the junction is driven normal

by a large magnetic field. Finally, we summarize our major discoveries.

4.1 Current-voltage characteristics (IVCs)

Our main probe of the physics of the junctions in this report (see Table 4.1) is the

current-voltage characteristic (IVC). We therefore begin this chapter by presenting an IVC

typical of those we measured in our samples, and describing how our IVCs resemble and

differ from those of "classic" junctions of larger dimensions.

Figs. 4.1 and 4.2 show the IVC for the sample with R, = 140 kQ at

T = 20 mK, and definitions of the quantities used to characterize the IVC. At first glance,

there is little to distinguish the curve from those of other high quality junctions. The IVC

has a well defined critical current, Ic, where, as the magnitude of the bias current is

increased, the voltage rises discontinuously from near zero to 2A/e, d being the

superconducting energy gap. After this jump, as the current is increased further, the

voltage remains at 2A/e for a time, and then smoothly rolls over to a linear dependence,

V = IR,. The only hint cf novelty in Fig. 4.1 is that Ic = 400 pA is greatly reduced

below its unfluctuated value, cO = 6.5 nA.

54



55

Table 4.1: Parameters for various samples. R, is the normal resistance. T..,, is the lowest

temperature at which data was taken for the sample. A is the area, measured by scanning

electron micrograph. C is the geometric capacitance, determined by multiplying the area by

the specific capacitance 25 fF/Im 2 . Ej is twne Josephson coupling energy at T = 0,
h4/8e2R,,. Ec is the charging energy, e2/2C. N 1 is the number of junctions in the sample.

Samples 1, 4, 14, and 16 had two junctions in series, one of which was much

smaller than the other. The R, and C listed are those of the smaller junction. Samples 7

and 8 were on the same substrate and shared a common electrode, but could be measured

separately; samples 9 and 10 likewise. Sample 15 is one junction of a three junction

sample, arranged as shown in Fig. 4.19.

Sample R, [kQ] Tmin [K] A [gm2] C [fF] Ej [K] Ec [KI Njj

1 0.52 1.4 0.1 2 40 0.45 2

2 1.1 0.02 4 100 21 0.01 1

3 3.4 1.8 0.15 3 6.2 0.3 1

4 6.5 0.85 0.4 7 3.2 0.15 2

5 8.3 0.02 0.15 3.2 2.7 0.3 1

6 14.8 0.02 .0.1 2.5 1.5 0.35 1

7 15.1 0.02 0.1 2.9 1.5 0.3 2

8 16.5 0.02 0.08 2 1.4 0.44 2

9 21.3 0.02 0.1 2.6 1.05 0.36 2

10 26 0.02 0.07 1.8 0.9 0.5 2

11 30 1.3 0.025 <1 0.7 >0.9 2

12 -30 0.02 0.1 2 0.7 0.45 11

13 34 0.02 0.1 2 0.6 0.45 1

14 70 0.02 0.04 1 0.3 0.9 2

15 74 0.02 0.04 1 0.3 0.9 3

16 110 0.02 0.05 1 0.19 0.9 2

17 140 0.02 0.05 1 0.15 0.9 1
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Rn= 140 kM

T= 20mK

4

V (mV)

2

0

I I I I I

0 10 20
I (nA)

Fig. 4.1: Low temperature IVC for the sample with R, = 140 L. At this scale, the IVC

appears the same as that for a large area junction, except for the strong suppression of 1,

from its theoretical value !,(T = 0) = 6.5 nA.
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10 R= 140 k92
V (IV) T!20 mK

5

0 
0

''I

1.5- RL
V(mV)

1.0

0.5

0 .
0 100 200 300 400

I(pA)

Fig. 4.2: Two [VCs for the sample with R., - 140 kWl, with the same current axis, but
different voltage axes. The top voltage axis is expanded about 100 times relative to the
bottom, revealing the low-voltage branch. The quantities I,, 1, Ro, and RL are defined.
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As shown in Fig. 4.2 (bottom), the IVC is hysteretic, with two stable voltage states

when 1, < I < I. I, is known as the "retrapping current," since, in the usual RCSJ

washboard model, it is at this current that the motion of the phase point changes from the

running state, with d9/dt = 2eV/h > 0, to the trapped state, in which (P is pinned by the

washboard potential, and the voltage is zero. Once again, the hysteresis and the existence

of the retrapping current are typical of the underdamped junctions of prior investigations.

The quasiparticle tunneling branch of the IVC is nearly ideal, with a sharp gap

structure and large leakage resistance, RL (Fig. 4.2, bottom). In fact, as we discuss in

section 5.1, RL in our junctions exhibits an ideal temperature dependence, RL -c e' /kT, as

reflected by I,(T), until the combination of high-frequency loading of the junction and the

dramatic onset of quasiparticle tunneling at V = 2A/e causes the retrapping current to

become temperature-independent, making it impossible to infer the size of RL.

How this IVC deviates from those of larger junctions, however, is apparent with

closer inspection. Most dramatically, in Fig. 4.2 (top) we see, upon expanding the voltage

scale 100 times, that our superconducting tunnel junction is not superconducting at all!

For currents -Ic I < 1, when an underdamped Josephson junction usually has

V identically zero, our junctions have an observable I V I > 0. We call this part of the IVC

a "low-voltage branch", to differentiate it from the "zero-voltage branch" of classic

Josephson junctions. For small currents, we observe a linearV(I), which we characterize

by R0, the differential resistance at I = 0. This new feature is now recognized as typical

of small-geometric-capacitance, large-R,, junctions [lansiti, et al., 1987a, 1987b, 1989a,

1989b; Ono, et al., 1987; Martinis and Kautz, 1989], and, as discussed in section 5.2, it

has profound implications for potential models of the physics of these samples. In

particular, the co-existence in the IVC of hysteresis and phase evolution on the low-voltage

branch is incompatible with the standard RCSJ model, where the Josephson channel is

shunted by a capacitor and a frequency-independent resistor.
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4.2 Junction Characterization

We continue with a discussion of measurements of the main characteristic quantities

of the junctions: 1c, r, and Ro.

4.2.1 The critical current I

The temperature dependence of I, for a number of junctions is presented in

Fig. 4.3. Starting from zero at Tc, 1, increases with decreasing T and reaches a maximum

around T = 3 K. Ic(T) then becomes reentrant and decreases to a degree which increases

with increasing R. Finally, at roughly T = 1.5 K, Ic starts to increase again, at first

gradually, but then at an increasing rate as the temperature drops below 300 mK. For

most of the samples, the value of 1, at 20 mK is somewhat lower than its maximum value

at high temperature. It is important to note that our junctions become non-hysteretic at high

temperatures, as the IVC approaches that of a normal tunnel junction, V = IR. When the

junction is non-hysteretic, we define the critical current as the point of intersection between

the current axis and the line tangent to the IVC at its subgap inflection point.

Earlier work in this lab on large area junctions demonstrated that the ideal

Ambegaokar-Baratoff relation [1963],

IcoR, tanh2-- (4.1)

2e 2UT

holds to within 10 % for our samples, and, therefore, that Ico(T) is a monotonically

decreasing function. In the RCSJ model, neglecting fluctuations, 1c, the measured critical

current, is equal to Ico, the "unfluctuated" critical current. Previous measurements by this

group of IJ(T) in large area junctions displayed this monotonic temperature dependence

[Danchi, et al., 19841, even when It(T) was suppressed below Ico(T) by thermal
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fluctuations [Fulton and Dunkleberger, 1974). By contrast, 1,(T) is reentrant for our

samples, and more markedly so as R, increases.

Finally, we note that the existence of phase evolution on the low-voltage branch of

the IVC implies that Ic is determined by damping, which prevents runaway by the phase

point (that is, switching to the gap voltage), despite the latter's frequent activation from the

potential well. This is different from the case in larger junctions (with Ro = 0), where I

is determined by fluctuations, which activate the phase point from the potential well once,

causing the junction to switch to the voltage state.

4.2.2 The retrapping current I,

1,(T) for four samples is displayed in Fig. 4.4. Although there is not the regular

dependence on R., observed in the lc data, the I, data all behave similarly. As discussed

below, aspects of this behavior are qualitatively different from those observed in

measurements of large area junctions.

At high temperature, our junctions are non-hysteretic; Ic and Ir are identical.

Starting from zero at Tc, both Ic and Ir increase, reaching a maximum around 3 K. Both

then defrease dramatically. The junctions become hysteretic at 1.5-2 K. After this, as lc

increases, 1, continues to decrease rapidly (see Fig. 4.5). Finally, at T - 0.9 K, 1,

reaches a minimum plateau.

Consider the data at temperatures where the IVC is non-hysteretic. Our junctions

have damping parameter QL = (2eIcoCRL2 /h) t2 > 1 for all temperatures except very

close to Tc, where Ico(T) is still nearly zero. For example, the sample with R, = 140 kW

has Tc = 3.75 K, and QL > I for all T < 3.7 K. In the absence of fluctuations, the

IVCs would be hysteretic. The IVCs are non-hysteretic because of thermal fluctuations,

which nearly continuously activate the phase out of the potential well.
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Fig. L4: I,(T) for four samples. The dependence of this data is less systematic with R,

than he I(T) data (Fig. 4.3). Ti particular, note that the low-temperature limit of Ir is not a

monotonic function of R.
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Rn=140 k.Q mm

Ic(T) I

102  "-" C3o Ir(T) theory

6-J

10101

Ir(T)

100 hysteretic VC nonhysteretic IVC

0 1 2 3 4

T [K]

Fig. 4.5: Ic(T), I(T), and theory for the sample with R,, - 140 kW). The theory deviates
from the data for reasons explained in the text. The theory's proper T dependence for

2 K < T < Tc indicates that it is the physics of 1r that determines both Ic and lr in the

non-hysteretic region (to the right of the dashed line).



64

Fig. 4.6 (a) shows schematically the IVC predicted by the RCSJ model for an

underdamped junction in the absence of fluctuations. The addition of large fluctuationst

changes the IVC in the following manner. For I < 1,o, the unfluctuated retrapping current,

the running state does not exist. If the phase point is activated out of the well, it will be

retrapped after traversing some (usually small) number of wells. There will be a dc

voltage, since dp/dt > 0, but it will be small.

Once I exceeds l,.o, however, the situation changes dramatically. The running state

now exists. If (p is activated from a potential well, it may be retrapped or escape to the

running state. Activation from the running state to the trapped state is also possible [Ben-

Jacob, et al., 1982]. The voltage will be an average of the running-state voltage and zero,

the voltage of the trapped state, weighted by the amount of time spent in each state. Before

I is significantly greater than 1,,, it is plausible that the phase point will be in the running

state most of the time, and that the voltage will be nearly 2AIe. The measured "critical

current" in this case, i.e. the current at which the voltage rises most sharply, will be

roughly 1,o. This value is a lower bound; the precise value will depend upon details of the

lifetimes of the running and trapped states as functions of 1.

When the junction IVC is non-hysteretic, then, the physics of the retrapping current

determine both I and I. If we can understand 1, in this temperature range, then we

understand I, as well. Our samples' measured maximtm in ,(T) is, in fact, in accord with

the standard RCSJ model. Clearly, I,(T,) = 0. As we review in the next paragraph, I,

decreases with decreasing T at low T. Therefore, 1,(T) must have a maximum at some

intermediate temperature.

t The fluctuations need to be large enough to destroy the hysteresis, but not so large that the picture of a

system evolving in phase space with noise as a perturbation upon its dynamics is inapplicable. The

presence of extremely large fluctuations, for example, makes a discussion of trapped and running "attractors"

moot. The influence of the potential in that case is negligible.
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Fig. 4.6: A diagram of the effect of large fluctuations on the IVC of an underdamped

junction in the RCSJ model. (a) the IVC in the absence of fluctuations. The voltage rises
discontinuously to the gap at co, and returns to zero at ho. (b) large fluctuations smear out
the IVC. As discussed in the text, the maximum in dV/dI occurs at a current equal to or
greater than 1,0. Using our definition of Ic for a nonhysteretic IVC, described in the text,
we find a value of Ic not too different from ,0.
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In the standard RCSJ model, I depends upon the resistor in parallel with the

Josephson channel, I, - 11R. The shunting resistor in our junctions is a quasiparticle

tunneling channel. As T decreases, quasiparticle excitations freeze out in the

superconducting electrodes. The effective resistance presented by this channel, inversely

proportional to the number of quasiparticles available to tunnel, should increase at low

temperature as ea/ T [lansiti, et al., 19851, and I,(T) should decrease accordingly.

Along with the 1,(T) and 4(T) data, Fig. 4.5 shows the retrapping current predicted

by the standard RCSJ model in the absence of fluctuations, IrO(T) = 41cO(T)/17O)pRLC

[Ben-Jacob, et al., 19821. Although the absolute agreement with the data is poor, the

shape of the theory is correct for T > I K. In this temperature range, the data clearly

display the eAlkT dependence of the leakage resistance. This resemblance is evidence that,

in the nonhysteretic region, Ic(T) is determined by the physics of 1r(T), that is the onset of

bistability in the system's unfluctuated dynamics.

The data in Fig. 4.5 are systematically greater than the predictions of theory, due to

two effects that are neglected. The first, discussed briefly above, is that in the non-

hysteretic regime, 1ro is only a lower bound for Ic. The second is the low impedance

presenteaI by the leads at high frequency, which, we argue in section 5. 1, increases 1,0, the

unfluctuated retrapping current.

What is truly novel about the /(T) data is the low-temperature minimun plateau.

As described above, the standard RCSJ model predicts that 1r - I/R, so that we expect 1r to

vanish exponentially as T - 0, due to the freeze-out of the quasiparticle shunt. The

observed plateau is a marked deviation from this prediction.

This unexpected plateau is the focus of section 5.1. We argue there that to

understand these data, we must add to the RCSJ model the onset of pair-breaking

quasiparticle tunneling at V = 24le and the low impedance presented by the leads at high

frequency. A typical transmission line impedance is 100 fl, much less than RL for our

junctions at low T. This has little influence upon the IVC of large area junctions, since the
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line impedance is shorted out by the junction's capacitance and its low resistance, except at

very low T, where RL is large. In high resistance samples, the effect of the low line

impedance at high frequency is to increase I, and V,, the voltage at retrapping, above their

values in the absence of leads. Eventually, as T decreases, freezing out ever more

quasiparticles, the junction retraps from V, - 2AIe. In section 5.1, we present an

argument based on energy conservation, that once the junction retraps from this level, and

V, is unable to rise any higher because of the large current onset at 2A/e, I, is constant for

any lower temperature. The combination of the low impedance presented by the leads at

high frequency, and the onset of pair-breaking tunneling at the gap voltage is, therefore,

responsible for the plateau in 1,(7).

4.2.3 The low-voltage branch resistance Ro

We show Ro(T) for a number of samples in Fig. 4.7. For all the samples, Ro is a

monotonically increasing function of temperature. However, the samples may be divided

into two catagories based on the behavior of Ro. In samples 1, 2, and 3 (R,, = 500 2,

1.1 kf!, and 3.4 kW, see Table 4.1), Ro(T) decreases rapidly below our experimental

resolution once T < T. They are identical to the "classic" samples of earlier work.

Samples with large R, behave differently. Ro is non-zero down to the lowest

temperatures attainable by our dilution refrigerator. The samples with the largest normal

resistance (samples 16 and 17) have Ro roughly equal to R, over a large range of T, and

show a sharp decrease in Ro only at low temperatures. The onset of rapid decrease occurs

roughly at the temperature whe!re Ej becomes equal to kT (see Fig. 4.8).

This marked difference between samples of low and high Rn, with a crossover

value of R, = 1- 10 kfW, is similar to that observed in studies of superconducting granular

films. In those experiments [Orr, et al., 1986], samples with R, > 6 kWl were insulating

at low temperature, while those with R, < 6 kW were superconducting. Our data are

evidence for the T = 0 phase transition predicted to occur in Josephson junctions as the
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Fig. 4.7: Ro(TIT,) for seven samples. The low temperature Ro for the samples with
R, = 520 Q2 and 3.4 kW is below the sensitivity of our instruments.
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Fig. 4.8: Ro(T/T,) for the sample with R, = 140 kQ. The sharp break in the data occurs

roughly when kT = Ej(T), marked by the dashed line.
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quasiparticle dissipation increases. According to the theory outlined in section 2.6,

quasiparticle tunneling flattens the junction's energy band structure (see Fig. 2.9). As the

bands become flatter, the voltage expectation value. <V> = (2e/h)<dp/dt> = dE/dq,

decreases, leading to a lower Ro.

4.3 Effect of applied magnetic field

As discussed in Chapter 2, quantum mechanical fluctuations of the phase are

predicted to be most evident in samples with Ej/Ec << 1. Our samples (see Table 4.1)

have EjiEc ranging from 0.2 to 200. A magnetic flux parallel to the oxide barrier of a

:unnel junction modulates the maximum supercurrent [Tinkham, 1975, p. 199]. In a

junction with uniform critical current density, and a- fields so small that the energy gap is

unaffected, Ico varies as

ICo(H) = Ico(O) sin(o / 0 0 ) (4.2)0/00

"Jere 0 is the flux threading the barrier and 00 = h/2e is the superconducting flux

quantum. Changing the field, therefore, tunes the Josephson coupling energy, letting us

cover a range of Ej/E( with a single sample. This technique has been used in experiments

studying MQT and chaos in Josephson ju.ctions [Devoret, et al., 1985; Hu, et al., 1987].

In Fig. 4.9, we show 1,(H) for sample 5, R, = 8.3 k2. The data have several

local minima, whose period implies that 2+t = 140 nm, where A is the penetration depth

and t is the barrier thickness. Assuming r = 2 nm yields A = 70 nm, a reasonable value.

The field dependence is not the ideal one given in (4.2). One rtason is the reduction of the

energy gap caused by the large field needed to thread one flux quantum through the

junction. A second is that our overlap junctions are not strictly planar, so the field is nu,
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Fig. 4.9: A graph of 4c(H), data and theory, for the sample with R, = 8.3 kfl. The

reasons for the poor fit are discussed in the text.
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parallel to the barrier over the whole junction area. Third, in these small samples, the

measured I, is relted to, but not equal to, the unfluctuated critical current /c0. If the ratio

!,(H)IIo(H) is a function of field, then the measured 1,(H) will d,,viate from the sinx/x

theory. Finally, some degree of non-uniformity is expected in the barrier, leiding to a non-

ideal lc(H).

4.3.1 Intermediate fields: novel IVCs

We have observed several novel IVCs in junctions with Ej reduced by an applied

magnetic field.

The first example of a surpr sing, field-induced feature on an IVC is the curve

labeled "0.175 T" in Fig. 4.10. The curve is hysteretic, and the low-voltage branch

displays a non-linear structure first reported by lansiti, et al. [1988], and which strongly

resembles a feature observed in 1VCs of arrays of superconducting tunnel junctions in

experiments done elsewh0:re [Geerligs and Mooij, 1988].

Starting at I = 0, the voltage rises quickly, appearing to follow the quasiparticle

branch, and then rolls over to a gentle ramp with dV/d/ of order megohms. As in samples

measured in zero field, the IVCs are hysteretic, with a discontinuous switch to the field-

reduced gap voltage.

At low ri,.Ai, the IVC is identical to that in Figs. 4.1 and 4.2. The first evidence of

new behavior is a region near 1, where a voltage step develops just before the jump to the

gap (the IVC labeled "H = 0.143 T" in Fig. 4.i0). Once this occurs, the step moves in to

the origin over a mere 300 G. Whenever the step appeared, its height was roughly equal

to e/2C for that junction, s-iggesting the influence of charging energy effects. Increasing

the field further causes the hysteretic region to shrink. Finally, the hysteresis disappears,

and the step is absorbed in the quasiparticle characteristic.

A similar evolution occurs when the temperature is used to change EJ. A

progression of IVCs at different temperatures is shown in Fig. 4.11. The field has
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Fig. 4. 10: Six IVCs of the 140 LO~ sample taken at constant temperature and different
magnetic fields. The step that develops on the low-voltage branch has a height of
100 ± 20 LV, roughly equal to e/2C = 80 g±V for this junction.
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suppressed this junction's T, to about 1.5 K, so lo(T) changes drastically over the

temperature range covered. The size of the voltage step does not change with temperature.

For this series of curves, in contrast to Fig. 4.10, we have not only a declining EJ, but also

increasing fluctuations, as T is increased. Tuning Ej with the field avoids this

complication.

4.3.2 Intermediate fields and an applied ac signal

In chapter 2, we described the Bloch oscillations predicted to occur in junctions

where quantum mechanical fluctuations of the phase are not negligible. Likharev and Zorin

[1985) predicted that these oscillations could phase lock to an applied ac field, producing

current steps on the IVC, just as voltage steps are created by phase-locking of Josephson

oscillations. With this inspiration, we took IVCs in the presence of an ac electric field. As

detailed in the next few paragraphs, we did not observe current steps.

We applied an ac signal to the junction by exciting a wire, which ended in a copper

plate beneath the sample substrate. This wire is part of the ribbon running down the

refrigerator which also contains the junction current and voltage leads. The ac coupling is

through the fields produced by the plate and also the capacitance between the signal wire

and the junction leads. This capacitance is probably around 100 pF, which at the

frequencies used (100-800 MHz) has an impedance of 2-20 Q). R,, RL, 1/oC and

ad_. = h0a2elo are all far larger than this, so the sample is probably ac voltage-biased.

This coupling scheme is uncalibrated. All power values given in Figs. 4.12, 4.13,

and 4.14 are measured at the source and are, therefore, only significant relative to one

another. Due to losses in the ribbon, the power delivered to the junct;;n was small, and the

IVC of the sample in zero magnetic field barely changed. Because of this, we combined

the ac field with a dc magnetic field. The latter reduced Ej to the point where the small ac

signal had a significant impact upon the IVC. As pictured in Fig. 4.12, the effects were

dramatic.
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At low power levels, the ac signal decreased the hysteresis in the IVC and increased

Ro, the slope of the low-voltage branch. At -9 dBm input power, the still-hysteretic IVC

develops a "step" near Io The curve is similar to that observed in the case of an applied dc

magnetic field only (Fig. 4.10, "H = 0.143 T"). Upon increasing the power further,

rather than having the step move in to the origin as in Fig. 4.10, a second step appears at

the origin and grows. The first step is pushed to larger currents and voltages and is

eventually absorbed into the gap structure. At still higher power levels, the second step

grows, to the point where it too is absorbed into the gap structure.

For other samples, the progression was slightly different (see Fig. 4.13). A step

would appear at the origin and then begin to grow, without having the stage where one was

present near I. A second, smaller step would appear near I, at higher power levels

(P =-I dB m).

If we interpret these as "current" steps, they have a spacing of about 25 pA. Steps

due to phase-locking to Bloch or SET oscillations at 100 MHz should appear at

I = 2ef= 32 pA or I = ef= 16 pA, respectively. Although these do not differ greatly

from the observed value, we can be certain that the steps are not due to Bloch oscillations,

since they do not depend upon the frequency of the ac field. This is demonstrated in Fig.

4.14, where the source frequency is now 800 MHz, compared to 100 MHz in Figs. 4.12

and 4.13, but the scale of the steps is unaffected. The lack of a frequency dependence also

rules out the possibility that these are Shapiro steps. The steps move in response to the ac

power. The only difference between the evolution in Figs. 4.12 and 4.14 is that more

power is needed in the latter to produce a curve of the same shape. This is probably due to

less efficient coupling of the 800 MHz signal down the refrigerator to the sample.

4.3.3 Large magnetic fields: N-I-N tunneling

A large magnetic field drives the junction electrodes normal. We can then compare

the properties of the samples with predictions from theories of tunneling in low-capacitance
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normal junctions. As detailed in the next few paragraphs, we see qualitative agreement

with these theories.

The parallel critical field Hcu of a superconducting film can be greatly enhanced

relative to the bulk H. Ginzburg-Landau theory yields [Tinkham, 1975, p. 124]:

H,11 = 2/-6- H , (4.3)
d

where A is the penetration depth and d is the film thickness. The bulk critical field of tin is

Hc = 305 G, while the samples had d - 70 nm and A - 70 nm as determined from the

minima in the measured Ic(H). From (4.3), Hc11 = 1500 G, in reasonable agreement with

the observed parallel critical field of roughly 3000-5000 G.

At large fields, our IVCs display slight deviations from the linear form predicted for

a normal junction in the C = 0 limit. As shown in Fig. 4.15, the curves had an increased

value of dV/dJ at small currents, and an excess voltage when extrapolated back to the origin

from large currents and voltages. Fig. 4.16 is a plot of the extrapolated gap voltage V8

versus magnetic field for a sample with C = 3.2 fF (R,, = 8.3 kM)). For small fields,

Vg(H) has the strong field dcp'ndence appropriate for the superconducting energy gap. At

higher fields, Vg(H) is independent of H, due to a crossover to the Coulomb blockade.

The residual gap, 22 V, is in good agreement with the theory of Averin an Likharev

[1986], V9 = e/2C = 25 4V.

In a single junction connected directly to leads, the Coulomb blockade should be

washed out even at T = 0 compared to the I - 2 dependence predicted in the absence of

long leads [Averin and Likharev, 1986], although the total excess voltage is preserved.

The quantum mechanical nature of the electromagnetic environment causes charge

fluctuations on the junction capacitor, even at T = 0 [Cleland, et al., 1990; Devoret, et al.,

1990]. These fluctuations allow electrons to tunnel at low applied voltage, a process
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Fig. 4.15: I-V characteristic and its derivative for the sample with R. = 140 kW in an
applied magnetic field of H = 1.2 T at T = 30 mK. The increased dynamic resistance
for small voltages and the voltage offset in the extrapolation from high currents and
voltages are due to the Coulomb blockade.
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Fig. 4.16: Gap voltage V,(H) as a function of magnetic field for the sample with

R,=8.3 kf. V9 diminishes rapidly at low H, as the superconducting energy gap is

decreased, and then reaches a field-independent level at large H, reflecting the presence of

the Coulomb blockade. The blockade in this case is 22 ^t, shown by the dashed line.
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energetically forbidden for q < e/2. In a series array, the eavironmental coupling of each

junction is decreased by the presence of the other. Put another way, a single junction

connected to leads is shunted at high frequency by a line impedance of 50-100 Q. Each

junction of a double-junction series array sees a higher line impedance, due to the large

blocking impedance of the other junction. The smaller current fluctuations, associated with

the larger impedance, give smaller charge fluctuations, and a smaller smearing of the

Coulomb blockade.

We see evidence for this effect in our samples. In Fig. 4.17, we show dV/dl vs. V

for the single junction sample with R,, = 140 kQ in several magnetic fields, all lirge

enough to drive the sample normal. The blockade is fairly weak. The excess % M1tage is

e/2C = 80 gV, but it has not developed fully by V(I) = 500 ,V. In Fig 4.18, we show

curves for one junction of a sample, sketched in Fig. 4.19, with three junctions, each

decoupled from the continuous leads by one other small capacitance junction. The

blockade in this case is noticeably sharper. Other experiments showing the blocking effect

of tunnel junctions in the leads have been done by Delsing, et al. [1989a].

A second interesting effect is the pronounced weakening of the blockade in single

junctions in a large magnetic field (see Fig. 4.17). Spin-flip scattering in the presence of

the field was originally proposed as a source of wavefunction dephasing and level

broadening, which weakens the Coulomb blockade [lansiti, 1988]. This weakening,

however, does not exist for the multi-junction sample (Fig. 4.1,V'), which shows a strong

blockade up to 6.5 T, the limit of our superconducting magnet. If spin-flip scattering were

the cause of the blockade smearing, it would also occur in the multijunction sample. The

source of the broadening, then, remains a mystery.
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Rn= 140 kM2
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25k.Q
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Fig. 4.17: dV/dl vs. V for the sample with R. = 140 kQ, at several magnetic fields. The
Coulomb blockade for this single junction sample becomes weaker as the field increases, in
contrast to the multi-junction sample in Fig. 4.18.
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Rn= 74 kW

T= 30mK
multiple junction

dV/dI 
H 6.TH=65

H =2.5 T
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V [9v]

Fig. 4.18: dV/dI vs. V for the sample with R, = 74 ki, at two different large magnetic

fields. This junction is isolated from the leads by other small-capacitance junctions (see

Fig. 4.19). The sharp Coulomb blockade is to be contrasted with the one in Fig. 4.17.
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4 15 .m

Fig. 4.19: Diagram of the multi-junction sample used to obtain the data in Fig. 4.18. The

rectangles represent microfabricated tin wires. Each of the three small-capacitance

junctions (striped squares) is isolated from the leads by the other two. The scales in the

horizontal and vertical direction.differ. This configuration was first employed to investigate

charging effects by Fulton and Dolan [1987].
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4.4 Summary

In this chapter, we have summarized the results of experiments on small, high-

resistance Josephson junctions. The main discoveries are:

1. [,(T) is reentrant to a degree which grows as R,, increases. It is greatly

suppressed below the Ambegaokar-Baratoff [co(T).

2. Ir(T) reflects the exponential freezeout of quasiparticles for T Z I K, but is

enhanced over the prediction of the RCSJ model ignoring fluctuations. Below -1 K, I(T)

is unexpectedly flat.

3. There exists an anomalous resistance Ro on the low-voltage branch.

4. A step appears on the low-voltage branch when Ej is reduced by a magnetic

field. The size of the step correlates with e/2C for the junction, suggesting the possibility

of charging energy effects.

5. Similar nonlinearities are induced by an ac bias. The features are independent of

the bias frequency, and thus not due to phase locking to Bloch or Josephson oscillations.

6. In the normal state, dV/dI is enhanced at low voltages, and the IVC has an

excess voltage, both signatures of the Coulomb blockade.

We pointed out in chapter 1 that as the junction area decreases, two assumptions of

the standard RCSJ model break down. First, the idealization of infinite impedance leads is

inappropriate, especially at high frequency, where transmission line theory suggests that

the line impedance is roughly that of free space, 377 f. Secondly, as we approach the

regime Ec > Ej, there exists the possibility of strong quantum mechanical fluctuations of

the phase. These fluctuations are modified, and, in principle, may be totally suppressed,

by the environmental coupling.
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In the next chapter, we investigate the consequences of the relatively small

impedance presented by the leads at high frequency. Much of the surprising data is

explained by an expanded RCSJ-plus-leads model, that also takes account of the

nonlinearity at the gap voltage that arises from the onset of pair-breaking quasiparticle

tunneling. Finally, in chapter 6, we discuss the evidence for the presence of large quantum

mechanical phase fluctuations. The case for their impact is suggestive, but not so

compelling as that for the importance of lead effects.



Chapter Five

The RCSJ-plus-leads Model

In this chapter we adapt the standard RCSJ model of a superconducting tunnel

junction to include the frequency-dependent impedance presented by the leads and the onset

of pair-breaking quasiparticle tunneling at V = 2A/e. Section 5.1 outlines the usual RCSJ

model (for additional discussions of this model, see Danchi [1983], Hu [1987] and lansiti

[19881), and presents retrapping current data that deviates strongly from its predictions.

We then introduce our extension of the standard model, which resolves this conflict. In

sections 5.2 and 5.3 we discuss the implications of the new model for Ro(T) and 1,(T).

Although quantitative results are scarce in these last two sections, clear avenues for future

research exist. Finally, we note results from samples at low temperature that are

inconsistent with a purely classical model and indicate the effect of quantum mechanical

fluctuations in these small junction samples.

5.1 The Retrapping Current

The retrapping current I, has always been the "little brother" of Josephson junction

measurements: unappreciated, often ignored entirely, and its physics given attention only

after that of the critical current I was well understood. Initial theoretical treatment of the

RCSJ model left out the inertial (capacitive) term, which is entirely responsible for the

existence of ,, in the name of mathematical simplicity. The effect of thermal fluctuations

on 1, was fully studied experimentally [Fulton and Dunkleberger, 1974] fourteen years

before the first measurements of their impact on Ir [lansiti et al., 1987; Kirtley et al., 1988].

At this moment, however, the retrapping current is enjoying a rise in popularity as

experimenters have begun to exploit its sensitivity to the junction's electrical environment.

89
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For an underdamped junction in the conventional model, 1 is proportional to the

damping (*- 1/Q). By contrast, the most likely observed value of the critical current, limited

by thermal activation or MQT, is only logarithmically sensitive to changes in damping, an

effect often masked by uncertainty in /co, the junction's unfluctuated critical current.

5.1.1 The retrapping current in the RCSJ model

Our starting point for understanding the dynamics of a. Josephson junction is the

resistively-and-capacitively-shunted-junction (RCSJ) model [McCumber, 1968). For the

present we include only the capacitance derived from the metal-oxide-metal sandwich

device structure, while the resistor represents the dissipative conduction across the tunnel

junction. In our experiments the junction's intrinsic dissipation is entirely due to

quasiparticle tunneling through the oxide barrier. For the moment, however, let us assume

that there is instead an ordinary (linear) shunt resistor R. The supercurrent channel is

governed by the Josephson relations, I = Ic0sin q, and dp/dt = 2eV/A [Josephson,

1962], where Ico is the unfluctuated critical current, q, is the order parameter phase

difference between the two junction electrodes, and V is the voltage across the junction.

Current conservation leads to the "tilted-washboard" equation of motion for 4p (Fig. 5. 1):

h2Cd2p+ rhl ld 2'O

2Cd,+ d4 + -co sinq'=- , (5.1)
2e J R dt : 2e 2e

where I is the applied dc current. This may be generalized to include an applied ac current,

or, as we will consider later, the noise currents generated by the resistor as required by the

fluctuation-dissipation theorem. We linearize (5.1) by setting sin q4 = 4p, and then define

the oscillation angular frequency for R = o@ as the plasma frequency %o, = (2elcoC)'t 2.

The damping parameter Q = a)pRC is the quality factor of the oscillation in this linearized

system. For Q 2 I and lro < I <lco, the system is bistable. qpt) can be in the "running
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(a)

c --- R(V)

(b)

U~p)

Fig. 5.1: (a) The RCSJ model. R(V) may be a quasiparticle tunneling channel, as
well as an ordinary resistor. (b) The washboard picture. The mass of the ball, the
height of the potential barrier, and the tilt are proportional to C, Ico, and I, respectively.



92

state," where the potential energy gained by moving through one period is exactly balanced

by the energy dissipated in the damping resistor, or q7 can be in the "trapped state," sitting

at the bottom of a potential well. It is simple to show that for Q >> I the minimum current

for which this bistability exists (the "unfluctuated retrapping current") is given by

ro = 4Ico/}tQ [Stewart, 1968; Chen, et al., 1988].

To derive this result, Chen, et al. consider the phase motion in an untilted potential,

neglecting damping, and solve for the trajectory which has zero velocity at the potential

maxima. The solution is () = 2sinh-(tanhopr). Integrating V2(t)/R for the motion and

setting it equal to the potential energy gained by moving through one period when the tilt is

lo (AP.E. = h/,o,2e) yields the desired result. In practice this formula is good to within

10% for any Q _> 1. [Ben-Jacob et al., 1982]

When the dissipation is due to a quasiparticle channel with normal resistance R.,

the situation is complicated considerably. The quasiparticle tunneling I-V characteristic is

highly nonlinear (Fig. 5.2), raising the question, "what is the effective resistance R* that

satisfies the relation 1,0 = 41co/7to)pR*C?" We first note that since l, <l40, retrapping

occurs from a voltage V < 2A/e, so that we expect only the part of the tunneling I-V curve

below the gap to be relevant.

With this in mind, two theories have been put forward for the effective resistance.

The "leakage-resistance" (L-R) model [lansiti et al., 1985] makes the approximation that

R*(T) = RL = RneAIkT, reflecting the exponential freeze-out of quasiparticles at low T

and the intuitive result R*(Tc) = R.. This amounts to replacing the quasiparticle IVC with

a two-part resistor whose current level at V = 2A/e is about equal to that of the

quasiparticle channel just before the huge current increase. In contrast, Chen, Fisher, and

Leggett (CFL) [ 1988] concentrate on the diverging dynamic conductance at low voltages to

arrive at the result (valid for A >> kT >> p)
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Fig. 5.2: A plot of the true quasiparticle I-V curve and three approximations. The solid
line is a theoretical tunneling I-V for T = At2ek [Van Duzer and Turner, 1981]:

IqP 2e - ke2A 112(eV+A) sinh Ko (eV
qp (eV + 2A 2kTI J 2kT)

The three dashed lines show the L-R, CFL, and normal resistances. For the CFL
resistance, we have used ho, = A/4e.
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(T) = R e A'k[ C RT _0.237] (5.2)

Both theories predict that 1, - 0 as T -+ 0 due to the dominating eA/kT factor in R*(T).

The difference between the two results is the factor in brackets in (5.2), which is less than

one, so the L-R model predicts a larger R*(T) and smaller 1,(T) than the CFL model.

The measured 4(T) for a number of samples is presented in Fig. 5.3, along with the

predictions of the L-R and CFL theories for the 8.3 kM sample; the predictions for the other

samples are curves of similar shape, translated vertically on the log plot to reflect the

increase or decrease of ,o. The major disagreement between experiment and theory is the

low temperature plateau in I, observed for each sample, differing strongly from the

prediction that I, = 0 at T = 0. The fit at higher temperature is better, reproducing the

increase of the data with increasing T, but still is unsatisfactory.

If we include noise currents in the RCSJ model [Ben-Jacob, et al., 1982; Chen, et

al., 19881, we can force a fit at high temperature for each of our samples. As in the more

familiar case of premature escape from the zero-voltage state [Fulton and Dunkleberger,

1974], fluctuations lead to a distribution of retrapping currents. Since the bistable region is

Io < 1 < Io, and since both solutions must exist for there to be switching from one to the

other, the effect of fluctuations is to increase I, (while they decrease Ic) in a statistical

fashion, with a most likely observed value that may be much larger than Io. The lifetime

of the running state in the presence of thermal fluctuations is

¢ (2;r/o) exp((!-lo)'R 2C/kT) [Chen, et al., 19881. For I = 21,, this may be written

in the more intuitive form r- (h/2eVro) exp(CVro2/kT), where VrO IrOR is

approximately the voltage from which the system retraps in the absence of fluctuations.

We recognize the prefactor as the inverse of the Josephson frequency at retrapping,

vj = 2eVoh, and the activation energy in the Boltmann factor is twice the energy stored in

the capacitor at V = Vho. This energy is a measure of the size of the fluctuation needed to
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Fig. 5.3: I,(T) for three samples with two theories for one data set. The solid lines show
the values of I,(7) predicted for the 8.3 k.W junction by the CFL and L-R theories in the

absence of fluctuations. Each follows the trend of the data for T > 1 K (the CFL theory
gives a fairly good fit), but both deviate strongly from the data at low T.
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trigger retrapping. An equation for rof this form also applies when the noise currents are

due to "blue noise" or "quasiparticle-colored blue noise" at T = 0, with kT replaced by

Aq,/2 and A; the activation energy is unchanged [Chen, et al., 19881.

As in the case of premature switching from the trapped state, each form for r yields

a most likely measured retrapping current I,*, whose value solves the implicit equation

dr(1r,)/dl = I I Il, where I is the current sweep rate [Danchi et al., 1984]. A simpler

equation which gives nearly the same result and is more intuitive is r(4) = -rpt, where

rp, is the experimental timescale (e.g. the time to sweep the current over some active

range); the precise value of this time is vague as we have defined it, but it affects 1r only

logarithmically. Given these four theories (L-R, CFL, L-R plus fluctuations, and CFL

plus fluctuations), each with a similar T dependence but different magnitude, there is

usually one that fits the data fairly well for temperatures above the point where I, levels off

(see Fig. 5.4). Since the theory that best fits the data differs from sample to sample,

however, and since none of these theories predicts the plateau at low T, sorre essential

physics must still be lacking. This physics is the interaction of the low impedance

presented by the leads at high frequency and the sharp increase in quasiparticle current at

V = 2A/e.

5.1.2 The RCSJ-plus-leads model

We now turn to our explanation of the I, data, which relies on a more sophisticated

junction model where the Josephson channel with unfluctuated critical current I0 is

shunted by the junction's geometric capacitance C, a quasiparticle channel with normal

resistance R,, and a transmission line formed by the leads. We use the theoretical IcoR 1

product to determine Io9, and a specific capacitance of 25 fF/.m 2 , combined with the

measured junction area, to estimate C. To understand the effect of leads on I, and to

motivate a "two-frequency" approximation of the line used below, it is helpful to review the
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Fig. 5.4: l,(T) for the 1.1 kf2 sample (solid dots) as well as four theories (lines): the L-R
theory with and without thermal fluctuations and the CFL theory with and without
fluctuations. Note that for this sample the best fit at high temperature is provided by the
CFL theory with fluctuations, while for the 8.3 kW sample, the CFL theory without
fluctuations agreed with the data.



98

dynamics on the retrapping branch of the I-V curve for the RCSJ model with a linear shunt

resistor and no fluctuations.

In this case, the phase point moves through the sinusoidal potential, slowing down

as it climbs the potential maxima and speeding up as it moves towards the minima. The

motion is strictly periodic (taking ( modulo 2r), and V(t) - dtp(t)/dt has Fourier

components at dc, and the fundamental and harmonics of wj = 2eV(I)/, the frequency

with which the particle traverses one period of the potential. For I >> I.0 the potential is a

perturbation on the "terminal velocity" condition V(I) = IR. The voltage is well

approximated by V(t) = V(I)+vacosjr, the Josephson channel carries little dc current, the

I-V curve of the device is well approximated by V(I) = IR, and the higher harmonics of

the motion are negligible. It is only close to I,0 that the I-V curve deviates strongly from

that of the resistor alone, and that the higher harmonics become important. Using an

analog simulator of (5.1), we see that even at 1.1 Io the dc voltage is still within 15% of

IR, and the second harmonic of joj is 20 dB down from the fundamental. These results are

the foundation of the procedure for estimating Io proposed in the next paragraph.

To find I,0, we could try to solve for the potential tilt that admits the trajectory with

d(pldt = 0 at all potential maxima. Our simpler, approximate procedure assumes that on the

retrapping branch, for I > 1ro, the I-V curve is given by V(I) - Vs(I) = IR, where Vs(1)

is the I-V characteristic of the shunt alone. We also assume that the dominant Fourier

components of the phase point motion are at dc and o.j = 2eVs(f)lh, so that the Josephson

channel sources a current Iosino~jt, which flows through R and C according to their

impedances at a)1. The average power dissipated at oa) is IC02Re[Z(rgj)]/2, where Z(0) is

the frequency-dependent impedance of R and C in parallel. At large 1, V(J) is large, as is

wj. The capacitor passes most of the current at w.j, and the resistor dissipates little energy

at this frequency. At very small 1, V(/) and c., are both small, so that at wj almost all the

current flows through the resistor. The power dissipated at o. would now be nearly

ICo2R/2, which exceeds IV(!), the power fed to the device by the current supply: our
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assumption that V(I)=IR must have broken down. The I-V curve is strongly distorted by

the Josephson potential, and retrapping is irrmninent (or has already occurred). We will

take as an estimate of lo, the retrapping current in the absence offluctuations, that current

at which the power dissipated at high frequency in this approximation is equal to the power

provided to the system by the dc supply.

To verify the accuracy of this estimate, consider its prediction for the RCSJ model.

The retrapping criterion is I,.oVs(Iro) = lco2Re[Z(o(I,o))]/2, or

120
21 2 2--c C (5.3)ro -2[l +0) R RCIJ 2(2e1,0R / h) RC'

We obtain the second near-equality by assuming wj(Iro)RC >> 1. Solving (5.3) yields

rO -
1 4  C (5.4)2/ G)PRC

which agrees with the conventional result to within a factor (2) 1/44/x - 1.5. This value

for 1,0 gives oJ(Ir) = 2elroR/h = o,/(2)114. Since we are in the underdamped limit,

Q = oPRC >> 1, the assumption used to derive the second half of (5.3) is justified. Our

condition gives a good estimate of lro for the RCSJ model.

To this point we have ignored the leads. Our approximation implies that the lead

impedance at dc and woj determines I,. At dc the leads present a large resistance shunted by

a large stray capacitance; at &j transmission line effects are important. The samples retrap

from Vr - 2A/e at low T, so wj/2xr- 500 GHz. At this high frequency, the impedance

of the leads is difficult to determine precisely, but the contribution of the on-chip circuitry

dominates. The characteristic impedance of an infinite line is typically nearly real with

magnitude (po/ereo) 1/ 2 log(Rj/R 2)/2r - 100 0, where (po/eo)I/ 2 = 377 fQ is the
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impedance of free space, e, is the relative pernitivity of the embedding dielectric (or some

effective permitivity if there are regions with different permitivities), and R1 and R2 are

characteristic dimensions of the line [Jackson, 1975, p. 385]. Any line with impedance

discontinuities will exhibit resonances, but there is nothing in the data that indicates that any

resonant effect is important. This could be due to an averaging of line parameters over

some frequency range larger than any resonance width, losses which attenuate the reflected

wave responsible for a resonance, or the lack of a resonance in the frequency range of

interest.

With these ideas in mind, we model the leads as two channels in parallel with the

junction: one at dc with large Rd (>>R) and Cdc, and a second at a)I with purely real

admittance Yac = Gc - (100 Q)-'. We require that Yac be open at dc; a capacitance in

series reminds us of this qualification (see Fig. 5.5). The retrapping condition, IoVs(1, 0 ) =

IcORe[Z(2eVs(,o)/h)]/2, now yields:

1,o V(iO) =0 (c + R-)/ 2.5)
[Gac + R-1 1 2 + [2eVs(!,o)C/h2

In the RCSJ model, Io = 4lco/,rQ - 11R, so VS(Iro) = IroR = 2how,1ire,

independent of R. According to (5.5), the additional damping of the leads increases 10 and

Vs(Io). If R-1 >> Gac, as is true for low Rn junctions at T not too far below Tc, most of

the current at coj flows through R, and the line has a negligible effect on ,,0. In this limit,

we expect Iro - 1/R, just as in the RCSJ model. When R' 1 <<Gac, VS(IrO) is enhanced

over the RCSJ value. The denominator of the r.h.s. of (5.5) is dominated by the second

term (which increases with R, while the other term is constant), yielding

IroVs(2,o) = I2 [ (/ 2IOS"0= C [2eVs(lro)C /h] 2 (5.6)
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Fig. 5.5: Sketch of the two-frequency circuit model used in this section. Cb is a blocking

capacitor indicating that the high-frequency line conductance Gac carries no dc current.
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I we set Vs(!) = IR, solving for 1,0 yields

Ico [RQJ 1/4 = IRCSJ [RG,] (5.7)

rO 21/4 -sRC rO

where IRcS. is our estimate of I. for the RCSJ model without transmission line effects

(see (5.3)). For the RCSJ model with linear resistor shunt, in the limit Gac >> R-1 , the R

dependence of 10 changes to Io - R-3 14 . We have simulated this RCSJ-plus-leads model

with an analog circuit, and have plotted the results in Fig. 5.6. There is a clear crossover

from R-I to R-3 14 behavior near RGac- 1 (R = 5 kil in this simulation).

Now we consider the circuit in Fig. 5.5. The dc shunt is a quasiparticle channel

with the strong gap nonlinearity, so Vs(I) < 2A/e for any 1 < ico. This maximum

possible dc voltage at retrapping combined with (5.4) implies a mninimum I,:

eIL ,
iro =l2 A 2 (5.8)

4A Ga +(4AC/h) 2  (

,,here w e have used the fact that R'l<<Gac in our samples.

The solid line in Fig. 5.7 is IO(T), obtained from (5.5) as follows: assume that

Vs(Iro) < 2A/e, so that Vs(I,o) = IOR*, and calculate Io; if this results in 1rOR* > 2A/e,

the assumption is not justified, so recalculate I,.o with Vs(Io) = 2A/e. A L-R model was

used for R*, Ico(T =0) = 110 nA, and Gac = (90 Q)-1. The open circles in Fig. 5.7 are

from simulations using a circuit based on the Magerlein design [Magerlein, 1978; Hu,

19871. A series combination of a resistor and large capacitor mimicked leads with a nearly

real admittance, Yac :- Gac = (900) "1 for w > co.. To model the nonlinearity of the

quasiparticle channel at 2A/e, we used a two-part resistor with I = V/R, for V > 24/e and

I = V/R ° = V/Rn ed/kT for V < 2A/e; we chose R, and C to match the R" = 8300 Q

sample (see Table 5.1). There were no other adjustable parameters.
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Fig. 5.6: This graph shows the effect of a transmission line on IrO when the dissipation at

dc is a linear resistor (not a quasiparticle tunneling channel). The solid line is the RCSJ

result, Io = I,RCSJ = 41colrQ; the open circles are ,ro = IoRCSJ[RGac]1/ 4 , reflecting

(5.6). The solid dots are simulated values. The simulation parameters are: /co = 1.2 mA,

C = 30 nF, and oP/2,r = 22.3 kHz. The "transmission line" is a 5 kfl resistor and a

3 4F capacitor in series. For frequencies well above [2x(5 kfl)(3 4F)] -l = 11 Hz,

which includes cop/2, the line is almost purely resistive, with impedance 5 ka. The

crossover from the R-1 to R- 314 dependence occurs near R = Gacl = 5 kW.
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Fig. 5.7: 1, vs. Tfor the sample with R, = 8300 Q. The open circles are data. The solid

dots are results of analog simulations incorporating the transmission line due to the leads.

The line is obtained using (5.5) and the procedure described in the text.
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Both calculated and simulated I(T) agree well with the data, reproducing Im'in, the

temperature at which I, starts to rise, and the abrupt transition between the two behaviors.

Interestingly, even when I,(T) is increasing, it is enhanced by a factor of more than six over

the prediction of a model ignoring the damping from the leads. Both the calculated and

simulated 1, fall significantly below the measured values for T > 1.5 K. This discrepancy

is probably due to thermal fluctuations which lead to a measured I, > I'o [Ben-Jacob, et

al., 1982], but are difficult to treat exactly in a model with frequency-dependent damping.

The success of models using a L-R form for R* supports our intuition that if the

junction retraps from near 2A/e, then the details of the quasiparticle tunneling at V << 24/e

(which lead to the CFL theory of R*) should not be important. The moderately good fit

obtained using a RCSJ model with the CFL R*() (see Fig. 5.3) is apparently fortuitous,

reflecting only that a lower R'and leads both act to enhance 1r, The CFL theory for R°

should, however, characterize the quasiparticle channel correctly in samples that retrap

from V << 2A/e [Kirtley, et al., 1988].

Finally, we compare the predictions of (5.8) with the measured I," for a variety of

samples (see Table 5.1), using G,,=(90 Q2)- . The agreement is good, reproducing the

nonmonotonic nature of Itmuin versusR, and C. We have also calculated our predicted I,1mi

for the sample of Kirtley, et a.[ 1988] which showed no minimum at low T. Our value of

3 fA is 4 orders of magnitude smaller than any retrapping current measured in their work;

they did not reach temperatures low enough to observe this effect.

5.2 RO

In the last section, we had great success explaining the I,(T) data using an extended

RCSJ model, which included the high frequency damping provided by the leads. In this

section and the next we consider the implications of this model for Ro(T) and lc(7).
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TABLE 5.1: Parameters for various samples. R, is the normal resistance. C is the

geometrical capacitance. I,""/"1 exp is the minimum measured retrapping current. Irmn calc

is calculated using (5.8).

Sample Rn [kf2] C [fF] Irminexp [pA] Imin calc [pA]

1 140 2 3 1.3

2 8.3 3.2 230 230

3 1.1 100 53 25
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5.2.1 The importance of Ro > 0

The junction I-V curve (IVC) dictates the need for modification of the RCSJ model.

As noted by Ono et al. [1987], an IVC with both hysteresis and a "tilted low-voltage step,"

i. e. phase evolution (and therefore a dc voltage) on the low-voltage branch, is inconsistent

with the usual RCSJ model with fluctuations.

When Iro <-I Ito, the RCSJ model phase space is divided into a basin of

attraction of the nonequilibrium ("running") state and one of the equilibrium ("trapped")

state, as shown in Fig. 5.8. [Ben-Jacob et al., 1982]. From this figure, it is clear that a

typical fluctuation out of the equilibrium basin will lead to escape, not retrapping in another

well. The IVC for such a system in the presence of fluctuations will be one of two types.

If z, the lifetime of the trapped state, is of order the experimental timescale or longer, there

will be a true zero-voltage branch with premature switching to the voltage state at I _<co;

if, on the other hand, -rt and r, the lifetime of the running state, are both short (due, for

example, to a large amount of thermal noise), the IVC will be non-hysteretic, with a time-

averaged V(/).

Ono et al. showed convincingly with computer simulations that a RCSJ model

modifieil to give frequency-dependent damping (see Fig. 5.9) could produce an IVC with

Ro > 0. They were, however, only able to reproduce their data quantitatively using a

fictitious T >> Texpt. Moreover, because they used a lumped element R-L-C series

approximation to the line (see Fig. 5.9), the shunt in their simulation had an unrealistically

large impedance at high frequency, where the impedance of the inductor was much greater

than 100 a a typical transmission line impedance.

We have qualitatively verified the results of Ono et al. using an analog simulator.

The initial simulations were of the RCSJ model with a two-part resistor approximation to

the quasiparticle channel. The simulator parameters were: Ico = 610 I.A, C = 200 nF,

wop/2r = 3 kHz, R, = 2.9 kQ, R, = 27 kW, and 2A/e = 2 V. At a low noise current

level, we observed hysteretic IVCs with premature switching to the running state, and no
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Fig. 5.8: (a) the Josephson potential for Iro < I < lcO. W ("well") and B ("barrier") are

points of stable and unstable equilibria. (b) phase space for the system. Each point W is

the attractor for a trapped state; the curve R is the running state attractor. Points inside a

dashed curve form the basin of attraction of a trapped state, while those outside make up

the basin of the running state. A typical fluctuation out of one trapped basin puts the

system into the running state, not another trapped state.
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Fig. 5.9: Three model circuits for a transmission line discussed in this section.

(a): L-R-C combination used by Ono, et al. [1987]. (b): three-part ladder model,

R+(R+(R+C)IIC)IIC, where + (11) indicates series (parallel). (c): R+C combination used for

the simulations of Ir(T) (see Fig. 5.6). Only circuits (a) and (b) produce Ro > 0 in analog

simulations of the RCSJ-plus-line model with thermal fluctuations.
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phase evolution on the low-voltage (here, a true zero-voltage) branch. The size of the

hysteresis (i.e. Ic,-r) decreased with increasing noise, eventually yielding noisy, non-

hysteretic curves resembling the results of the theory of Ambegaokar and Halperin [1969]

for junctions with Q = 0. We never saw a hysteretic IVC with Ro > 0.

In the first attempt to simulate the Ro branch using a RCSJ-plus-leads model, we

added a series combination of a 20 Q resistor and a 2 pjF capacitor to simulate a line with

Zo(a4)<<R,, RL, as we had done in the simulations of, 0 . Surprisingly, the behavior was

essentially identical to that of the pure RCSJ case. We did not see a hysteretic IVC with

R0 > 0.

The next step was to use a three-part ladder model of a line: R+(R+(R+C)IIC)IIC,

where + and II indicate a series and parallel combination, respectively, and

I/wPC - R = 20 Q (see Fig. 5.9). This circuit did have a branch with Ro > 0 over a

wide range of noise current magnitude. For low noise, the voltage consisted of short

pulses separated by long intervals with V = 0 (no phase evolution); increasing the current

noise gave more continuously activated behavior. As expected given the incompatibility of

Ro > 0 with the RCSJ model, the phase point was never activated to the running state,

which the hysteresis shows to be stable. Instead, the activation was to the basin of

attraction for one of the two neighboring wells in the potential, which must more closely

approach the basin of the original well in the new, higher-dimensional phase space of the

system.

Our conclusion from these simulations is that at least two requirements must be met

to produce an IVC with Ro > 0, within this modified RCSJ model: first, the damping

must increase greatly at high frequency, in order to prevent runaway after a phase slip; and

second, the damping must have at least a minimum complexity. We speculate that the

damping must have at least two poles, as in the R-L-C series combination used by Ono et

al., which our simulations bracketed with one and three poles. To this point we have not

done quantitative simulations of our junctions due to the difficulty of supplying "colored"
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noise (i.e. noise reflecting the frequency-dependent real part of the admittance presented by

the junction plus line) to the simulator.

5.2.2 Numerical Results

It is difficult to predict the value of Ro within the RCSJ-plus-leads model. The

physics on the low-voltage branch is that thermal noise excites the phase point out of the

potential well, and the point is retrapped after sliding one period (or perhaps several

periods) down the potential. There has been little theoretical research into this problem

when the damping is frequency-dependent.

The problem of the escape rate from a metastable equilibrium with barrier height

AU >> kT and frequency-independent damping was solved by Krameis [1940]. His

result was F= WA/2zrexp(-AU/kT), where WA is a characteristic frequency ("the attempt

frequency") that is a function of damping. For light damping (Q > 1, in the RCSJ

model), oWA = op. We expect the Boltzmann factor to be unchanged for junctions with

frequency-dependent damping, but it is unclear how W0A is affected. Given .OA, however,

we can derive an expression for Ro as outlined in the next paragraph.

Suppose the escape rate is F= o)A/ 2 1r exp(-AU/kT), and consider an infinitesimal

washboard tilt i (see Fig. 5.10). We allow activation in each direction and assume that (0

slips one well (2,r) per escape. The net velocity down the potential is

d(p/dt = WAexp(-AU*/kT){ 1-exp((AU+-fAU)/kT)}, where AU + and AU- are the barriers to

escape down and up the potential, respectively. Since AU+-AU" = hi/2e << kT, we use a

Taylor expansion for the second exponential. Using Ro -V(i)/i = h(p/2ei, we obtain:

Ro = h (.0) exp[ --- (5.-4e' kT k . T (59
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Fig. 5.10: The washboard with a small tilt. AU and AU- are the barriers to escape with

and against the potential tilt, respectively. When there is enough damping at high

frequency to prevent runaway, we expect V(i) = iWo, with Ro given by (5.8).
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We can adapt this procedure for any escape rate. For example, Barone, Cristiano,

and Silvestrini [1985] have calculated Fwhen the barrier is fairly small:

F= = L {_.LCk .L (5.10)

Here EO is a typical initial energy for the particle in the well. Its value is poorly determined,

but when AU>>kT, a reasonable value is Eo = kT.

This expression should be accurate for the sample with Rn = 520 0, where lead

and quantum effects are minimal. We convert it to a prediction for Ro by:

Ro = hi [" I 1, (5.11)

where i is a small current, and 1' and F- are the escape rates down and up the potential,

respectively. This theory is compared to data in Fig. 5.11. The agreement is excellent.

At low temperature, the intermediate and large-Rn samples have AU kT and

measurable RO, allowing comparison with the Kramers prediction that RO vanishes

exponentially as T -) 0. As shown in Fig. 5.12, however, the data level off at low T,

proving the existence of non-activated escape.

This is an observation of the effect of quantum fluctuations on these samples.

Adding quantum mechanics to the model enhances the escape rate from the potential well

above the classical prediction. For samples with Ej > EC, the data agree well with the

escape rate calculated using clasical and MQT theory [lansiti, et al., 19891. In Fig. 5.13

we show data and theory for Ro(T) for the 14.8 d) sample.

We have assumed in the calculation that the effect of damping by the leads is

twofold. First, it traps 9 after a 21r slip. Second, the damping is not so large as to

overdamp the junction, which would inhibit both thermal activation and quantum tunneling,
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Fig. 5.11: RO vs. I/T, data and theory, for the sample with Rn = 520 fQ. The solid dots
are data. The line is the prediction of a theory discussed in the text.
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Fig. 5.12: Ro(Tc/T) data and classical theory for the samples with Rn = 140 kU

(squares) and 14.8 kK2 (circles). The solid lines are the predictions of a classical theory

described in the text. As T --+ 0, the predictions vanish exponentially as the Boltzmann

factor e-,dU/kT. The data level off due to the effect of quantum fluctuations of q4.
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quantum tunneling thermal activation

10 2  10- 1  10 0
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Fig. 5.13: Ro(T) data and theory for the sample with Rn = 14.8 kW, in zero magnetic
field. The data are the open squares. The line is a theory described in the text. In the

vicinity of the crossover temperature, To - 0.3 K (dotted line), the escape rate goes from
thermally activated behavior to its low temperature limit, predicted by MQT theory.
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but is sufficient to keep the junction out of the extremely underdamped regime

(Q >> AUIkT, which would be the case if the damping were only due to quasiparticle

tunneling), where thermal activation is reduced by slow equilibration of (p to the bath

temperature. We assume that the leads have no other effect upon the escape rate.

The T = 0 escape rate due to quantum tunneling is [Caldeira and Leggett, 19811:

.m = )P[12,],rU6 ( 36 AU (5.12)
2z,. = h6 pexp 5 hp

Above the crossover temperature between quantum tunneling and thermal activation,

Txo = hwp/21rk, we calculate the escape rate with the Krarners form for the usual RCSJ

model in the underdamped regime. In each case the conversion from escape rate to RO is

made using the argument leading to (5.9). The agreement between data and theory is very

good. Moreover, as shown in Fig. 5.14; data for Ro(T) from the same junction with [cO

reduced by a magnetic field do not level off at low temperature, arguing that extraneous

noise is not causing these observations.

Martinis and Kautz [1989] assumed that q slipped several wells after each escape to

fit their data, which agreed with their computer simulations. In contrast, our data for Ro(T)

agrees well with analytic calculations assuming single-well slips. This could be due to the

significantly larger damping at high frequency in our samples, which suppresses multiple-

well slips (our Z(co,) - 100 Q << -5000 0 for Martinis and Kautz).

5.3 The Critical Current

For the moment, assume that the value of Ro is known; in the previous section, we

showed that, for our samples, its value is roughly what we would calculate using Kramers'

theory (or, if appropriate, MQT theory) for the escape rate from the potential well and the
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Fig. 5.14: Ro(T) data for the sample with Rn = 14.8 kfl in an applied magnetic field

H = 600 G. The data appear thermally activated over the entire temperature range,

suggesting that the low-temperature plateau observed in the data with H = 0 (Fig. 5.13) is

not due to extraneous noise.
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assumption that p slips 21r per escape event. If Ro is known, we can apply to 1, some of

the arguments developed in section 5. 1.

I, like I,. is determined by damping. This is indicated both by the phase evolution

on the low-voltage step and the narrow critical current distribution observed in our

experiments. The phase point is activated frequently out of the potential well, and only the

high frequency damping prevents runaway (a voltage switch to 2A1e). At a large enough

tilt, this braking is not sufficient, and (p runs free. Unlike premature switching in the

standard RCSJ model with noise, this runaway is not the result of a single rare escape, so

we expect a narrow distribution of measured critical currents. As long as we can interpret

I, as the current at which the system switches from one type of motion (hopping down the

potential) to another (runaway), we can apply the energetic argument that led to the estimate

of Ir(T).

The (dc) power input to the junction is IV([ )- PRo. This power must be

dissipated as q9 hops down the potential. If the characteristic frequency of a hop is o., an

estimate of the power dissipated is Ico2Re[Z(o)]/2, where Z(co) is the impedance presented

by the combination of the junction capacitance, the quasiparticle channel, and the leads.

Assuming that runaway (the measured Ic) occurs when the dc input power exceeds this

upper bound, and that the high-frequency line impedance is GaC >> RL'1, R,-], we obtain:

2
2Rc° Ga/2 51

G2 R 22C2 (5.13)

The relation (5.10) predicts that

Ro _' a./2
S) =(5.14)2 2 c2
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where R' should be about 50 Q for each of our samples, since CopC - (1011 rad/sec)x

(10 -15 F) = 0.0001 Q-1 << Gac - 0.01 fl-1. Fig. 5.15 is a plot of I/Ilo versus Ro for a

number of samples. The trend (Idlco)2Ro equals a constant is followed relatively well, but

the data is best fit by R' = 6 92, about one tenth the predicted value. The deviation from

this form at high Ro (high T) is due to the disappearance of hysteresis in the IVC. Beyond

this point, there is no switching from hopping to runaway motion at I, but rather some

averaging between the two states. We no longer expect our energy arguments, dependent

on the switching, to apply.

Guided by this reasoning, we can analyze the data of other workers. The IVC

published by Ono et al. [1987] (their Fig. 1) has 1co = 20 nA, Ic = 1.3 nA, and

Ro = 6 ks), so that (lco40 )2R0 = R'= 25 Q2. The junction in this experiment, like ours,

had no special transmission line patterned onto the chip; the high frequency line impedance

is about 100 fQ. Since their o0PC = (1011 rad/sec)(10- 14 F) = 0.001 2-1 is negligible

compared to the line admittance, (5.14) predicts R' should be the same as for our samples.

Although their value of 25 fl is a bit above the best fit to our data (6 fQ), their measured

(IclIco, Ro) pair lies within our data's scatter, as indicated in Fig. 5.15. Moreover, their

measured R' agrees well with the prediction of (5.14).

Finally we turn to the data of Martinis and Kautz [1989], who used very resistive

on-chip circuitry as a well characterized high-frequency environment for their sample.

They were able to fit the Ro and I, data nearly exactly with a complicated computer

simulation, which included a multipart lumped-component approximation to the line. Their

sample B had the reentrant I(T) common to our samples. The two IVCs with T = 1.27 K

and 2.1 K in their Fig. 2 lie in the temperature range below the local minimum in lc for

which our relation between 4c and Ro holds. For both these curves [co = 50 nA, and

C = 20 fF. The 1.27 K curve has c = 1.23 nA and Ro = 4.7 kfi-; for the 2.1 K curve,

Ic = 1.17 nA and Ro = 11 k2. The values of (lc/lco)2Ro are 3 f0 and 6 Q respectively.
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Fig. 5.15: Ic/IcO vs. RO for four junctions from this work and samples of other authors.
The open squares, triangles, solid squares, and circles are data from the samples with
Rn = 8.3, 14.8, 34, and 140 kQ respectively. The large solid circles and box are data
taken from Martinis and Kautz [1989], and Ono, et al. [19871. The solid line is a rough fit

to the data, (!c/lco)2Ro = 6 Q.
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This sample is different from ours and that of Ono, et al. Patterned onto the chip is

an extremely resistive line connected to the junction. Martinis and Kautz estimate its

resistance and stray capacitance as r = 200 //p.m and c = 50 aF/pLm; even at

w/21r = 14 GHz, the line's inductance is negligibleJ Ignoring the inductance, the line

impedance at co, is 4800 Q2 (cf. our 100 0). Unlike our sample, here it is the line

admittance, not wotC, that is negligible in the denominator of (5.14); for this junction,

o, C = (1011 rad/sec)(20 fF) = 0.002 Q-I >> Gac = 0.0002 Q-1. Remarkably enough,

evaluating (5.14) yields R'= 30 Q, almost the same as the 50 fl predicted for our

samples, radically different though they are. As shown in Fig. 5.15, Martinis and Kautz's

(ldIco, Ro) pairs fall among our data, agreeing with the prediction that R' should be about

the same as for our samples, despite the vastly different line configuration.

The experiment of Martinis and Kautz also illuminates some of the problems with

the simple calculation of Ic. The only nominal difference between their samples A and B is

the length of the resistive line attached to the junction. At co., however, the admittance of

the line is the same for both samples because each line is much longer than the extinction

length I, at that frequency.t The two samples have equal Ro at each temperature; (5.14)

predicts that they should have the same 1, but that of sample A is consistently higher.

Although not predicted by our simple view of the junction dynamics which leads to

(5.14), this result is in accord with the intuition that damping controls Ic. The line of each

sample looks open at low frequencies, and their impedances are equal at high frequencies

§ pl-(10 1 1 rad/sec)(200 fH/pm)i=0.02 f,/jim may be ignored in comparison to r=200 f./p.m. The

inductance becomes important only at o-(200 f0l/m)/(200 fH/m)=101 5 rad/sec, well above the

superconducting energy gap of niobium or any other relevant frequency.

t The extinction length is roughly the length of line that has dc resistance equal to the line impedance.

Here that is about 25 prm, in contrast with the 500 pm and 1.5 mm line lengths for the two samples.
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when l4 is much less than either line length. In between these two regimes, the damping in

sample A is greater. Therefore, its I, should be larger, as borne out by the experiments.

The simple assumption, that only Z(owp) is relevant, ignores the complex motion that p

undergoes due to thermal noise. In the case of Ir in the absence of noise, the strictly

periodic phase motion justifies the assumption that only circuit parameters at dc and a)j are

important. It is not so accurate for the case of 1, in the presence of noise. The approximate

procedure is useful, however, contains the essential physics of this phenomenon, and

might be extended to predict the dependence of I, on the damping in a wide frequency

range.

5.4 Summary

In this chapter, we noted that the usual RCSJ model is incompatible with two

phenomena common to our samples: the flat minimum in I,(T) at low T, and the existence

of hysteretic IVCs with Ro > 0 on the low-voltage branch. This motivated a new RCSJ-

plus-leads model, which accounts for high-frequency losses in the leads.

The model agrees well with the 1,(7) data. We cannot make a complete quantitative

comparison with the Ro(T) data, due to the lack of theoretical work on escape from a

potential well with a small barrier and frequency-dependent damping. The data agree well

with calculations that include the crossover from quantum tunneling to thermal activation,

assuming that (p slips one well per escape. We have also argued that general energetic

considerations account for the relationship (I4lho) 2Ro - constant that characterizes most of

the data. The predictions of the energy argument also agree with data from other groups.



Chapter Six

Conclusions and Suggestions for Future Work

The standard RCSJ model of the Josephson junction was suggested by McCumber

in 1968. Through the last 22 years, experiments on these devices have repeatedly provided

exciting new results, whose explanations have required the consideration of an ever

expanding list of physical phenomena. To this list, which includes macroscopic quantum

tunneling (MQT) [Martinis, et al., 1987], chaos [Hu, 1987], and thermal activation over a

barrier [Fulton and Dunkleberger, 19741, we now add frequency-dependent damping and

the physics of the quantum rotor coupled strongly to its environment

We began this work not only with the goal of exploring these ideas, but also with

faith that a novel part of tie device parameter space would hold the same richness that

infused the work of earlier experimenters. Our investigations, driven by the development

of electron beam lithography at Harvard, led to unexpected and stimulating discoveries.

We summarize them here, along with our conclusions and suggestions for future work.

In this report, three types of behavior have been suggested for op, the order

parameter phase difference between the electrodes of a Josephson junction. We can call

these classes "classical," "MQT-like," and "purely quantum mechanical."

This division is certainly arbitrary. The correspondence principle dictates that

"classical mechanics" is quantum mechanics of the full Hamiltonian of (P plus the

environment, in the large quantum number limit. By "classical," we mean that negligible

errors result from the approximation that (p is a sharp variable, undergoing damped

dynamics in the cosinusoidal pott- tial. The damping is strongly frequency-dependent in

our samples, and in any large-R, sample, at low T, connected directly to leads.

"MQT-like" behavior is quantum mechanics in the limit where the bandstructure is

tight-binding-like (flat bands, separated by energy hUp), and the wavefunction i(ip) has

width much less than 21r, but much larger than the rms fluctuations predicted by

124
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equipartition, &P,ms = (kT/Ej)1/2. In the samples of previous MQT studies, the phase

tunnels from the potential well into a running state. If the MQT picture applies to our

samples, the tunneling is into a metastable state in a neighboring well, and, since that state

is not at the same energy as the initial state for a small current (washboard tilt), the

tunneling is inelastic.

By "purely quantum mechanical," we mean that both these approximations do not

apply. Specifically, there exist effects due to a band structure that is not flat and has gaps

separating the bands. If the gaps are not effective, the system acts like a normal junction in

the large charging energy limit.

In our experimnents, the first two behaviors have been observed clearly; the

evidence for the third is suggestive but not convincing.

Many of our measurements agree with the classical approximation in the presence

of frequency-dependent damping. Moreover, the results differ qualitatively from those of

the standard RCSJ model. One striking change is documented in the r(T) data. At high

temperature, the measured retrapping current is enhanced above the RCSJ value by

dissipation in the leads. As T -- 0, Ir reaches a constant, non-zero value (in contrast to

the exponentially vanishing 4(T) predicted by the RCSJ model), due to the existence of the

small high-frequency impedance of the leads and pair-breaking quasiparticle tunneling at

V = 2/e, two sources of dissipation that do not vanish at low temperature.

A non-zero Ro, not expected in the usual RCSJ model, is explained by the inclusion

of frequency-dependent damping. The existence of phase-evolution on the low-voltage

branch implies that the measured critical current is no longer determined by a single,

fluctuation-driven escape (as in the underdamped RCSJ model), but is now dependent

upon damping. We have proposed an energy balance argument which leads to a simple

calculation for 1, in a hysteretic IVC, given RO and the high-frequency embedding

impedance. The predictions agree fairly well with our data, as well as data from other
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groups. Some of these latter data are from samples whose high frequency environment is

much different from that of our own, making them a good test of the theory.

It is difficult to make quantitative predictions for Ro(T), since the barrier to

activation in our samples is often small, that is, AU = 2Ej is only slightly larger or even

smaller than kT. No reliable theory for this regime exists. Moreover, no theory exists for

the effect of frequency-dependent damping on the escape rate. If we assume that the leads

limit the slip to 21r when the phase point escapes from the well, but have no effect on the

escape rate itself, our Ro(T) data for low-Rn samples (which have AU kT for T not too

close to Tc) agree well with the Kramers theory for thermal activation. RO decreases

exponentially with decreasing T, until it is below our minimum resolution.

The intermediate and large-Rn samples have AU kT at sufficiently low

temperature, allowing comparison to Kramers' theory. It predicts an exponentially

vanishing Ro(T) as T -+ 0, but the observed Ro(T) levels off, suggesting the effect of

quantum fluctuations of qp. Once again, assuming that the leads retrap ( after a 2;r slip and

have a negligible effect on the escape rate itself, the data agree well with the escape rate

predicted by MQT theory in those samples with EJ not too much larger than EC, where this

theory should be most applicable. Ro(T) data from a junction with IcO reduced by a

magnetic field do not level off at low T, arguing that extraneous noise is not the source of

these observations.

We now turn to the question of purely quantum mechanical behavior, the theory of

which was sketched in chapter 2. The strongest evidence for such behavior is the

resemblance between curve "kTIEc = 0.5" in Fig. 2.7, a theoretical IVC for a Josephson

junction with quasiparticle tunneling and thermal fluctuations, and the IVC of the 140 kfQ

junction Fig. 1.5. In each, V(I) increases rapidly for small currents, and then levels off at

V = e/2C. After the plateau, the theoretical V(I) approaches that of a junction with

Ico = 0, over a narrow current range. Similarly, the measured IVC has a discontinuous

jump to the quasiparticle characteristic at I = Ic.
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It is unlikely that classical dynamics could lead to an IVC like the one measured.

Had we observed the predicted current steps in the IVCs with an added ac field (Figs.

4.12, 4.13, and 4.14), however, our claim of quantum behavior would be considerably

stronger. The ac-driven IVCs do not resemble the predictions of either classical or

quantum theory. Further simulation (both analog and digital) of the RCSJ-plus-line model

with fluctuations, in the limit of small Ico, is needed to rule out the possiblity of a classical

explanation. Understanding is also needed of the effect of leads on the quantum theory.

Present theories of N-I-N tunneling with frequency-dependent damping [Cleland, et al.,

1990; Devoret, et al., 1990] may provide some guidance.

Given our results, clear avenues for future research exist. First, more convincing

evidence of the quantum mechanical regime is needed. It is possible that the leads' high

frequency damping, and the noise current associated with it through the fluctuation-

dissipation theorem, are modifying the junction behavior. Cleaner observations of this

regime might be made in samples with integrated, highly resistive *ads, whose impedance

in the gigahertz range, although much smaller than the dc impedance, can be much greater

than the usual 100 02 [Martinis and Kautz, 1989]. Unfortunately, even a small measuring

current passing through such resistive leads can weaken the desired quantum dynamics by

heating the sample, especially at dilution refrigerator temperatures where heat-sinking is

difficult.

Heating can be avoided if the blocking impedance is lossless, e. g. due to other

low-capacitance junctions. Recent work by another group on arrays of Al junctions

[Geerligs, et al., 1989] has produced IVCs with a negative-dynamic-resistance region

much like that predicted by the quantum junction theory, when interband transitions due to

Zener tunneling and thermal activation are negligible. Experiments done at Harvard on Sn
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arrays, however, show no such behavior.t The IVCs for these arrays in zero-field

resemble those of single junctions in the classical and MQT-like regimes.

After confirmation of the quantum regime, the next logical step is to observe the

Bloch oscillations directly, both through phase-locking to an ac signal, and detecting the

voltage oscillations associated with the coherent Cooper pair transfer. An elegant approach

to the second objective would be to detect with one junction the Bloch oscillations occuring

in another, analogous to Giaver's famous experiment, in which Josephson oscillations in

one junction led to detectable photon-assisted-tunneling steps in a second [Giaever, 19651.

Further research is needed on the device applications of these effects. Likharev and

Zorin [1985] have suggested that Bloch oscillations, phase-locked to a microwave field

(vB = I/2e), be used in a superconducting current standard, just as. synchronized

Josephson oscillations (vj = 2e/h) define the standard volt. The quantum Hall effect

(V = hline2, n an integer) would close the "quantum metrological triangle" (see Fig. 6.1).

Comparison of the results of the three experiments would tell whether a deviation exists

from the fundamental relations. Initial work towards this goal has so far exploited only the

incoherent tunneling of normal electrons [Geerligs, et al., 1990]. The steps in the IVC

were noise-rounded, precluding the use of the device as a current benchmark.

In conclusion, using electron beam lithography and dilution refrigeration, we have

studied Josephson junctions with small geometric capacitance and large normal resistance.

The assumption of the usual RCSJ model that the leads can be ignored is no longer valid;

this has a profound effect on the junction IVC. We have strong evidence that quantum

fluctuations of the phase, also neglected in the RCSJ model, are important at low

temperature. We have presented a number of semiquantitative methods to predict the

important quantities Ic, Ir, and RO. Finally, we have suggested several intriguing areas for

t T. S. Tighe, private communication.
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f

V=hfl2e Josephson Bloch I=2ef
oscillations oscillations

Quantum Hall[
VEffect I

V=hI/ne 2

n an integer

Fig. 6. 1: The quantum metrological triangle. DC voltage and current standards are made

by synchronizing Josephson and Bloch oscillations to a well-calibrated frequency source.

These standards can be compared using the quantum Hall effect, V = hi/ne2, n an integer.

Any discrepancy arising in the experiment indicates that at least one of the three

fundamental relationships is inexact. Adapted from Likharev and Zorin [1985].
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further work, especially the need for theoretical insight into the impact of frequency-

dependent damping on both thermal activation and quantum tunneling.
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Appendix: Sample Fabrication Procedures

Cleaning substrates (suitable for new silicon wafers):

1. 5 minute ultrasonic in trichloroethylene (TCE).

2. 5 minute ultrasonic in acetone.

3. 5 minute ultrasonic in methanol. Steps 1-3 form the "T-A-M" cleaning process.

4. Blow dry.

Pad fabrication:

1. Spin Shipley 1400-27 photoresist at 4500 rpm for 45 seconds (-1.2 jIm).

2. Bake 20 minutes at 70 C.

3. Soak 10 minutes in chlorobenzene.

4. Bake 10 minutes at 70 C.

5. Blow dry.

6. Expose 3.5 seconds with Karl Suss mask aligner.

7. Develop about 60 seconds with Shipley 351 developer. Remove a few seconds

after the large open areas of the pads look clear. The undercut should be

barely visible (-I gm).

8. Evaporate about 50 A Cr followed immediately by 450 A Au. The cold trap

must be used.

9. Liftoff with acetone. If undercut is produced, the liftoff is immediate.

Intermediate cleaning:

1. 30 minute in gently boiling photoresist stripper on hot plate.

2. 5 minute ultrasonic cleaning in 18 Mf2-cm water.

3. Dip in methanol. This must be done because water and TCE (step 4) react in an

unpleasant manner.
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4. 5 minutes ultrasonic "T-A-M" (See substrate cleaning section).

This thorough cleaning process is essential. Any photoresist residue

on the pads will cause the pressed indium contacts to fall off

the sample.

Sample fabrication with EBL:

1. Spin PMMA(MAA), 0.12 g/ml in acetic acid, dt 2000 rpm for 60 sec.

2. Bake 60 min. at 180 C.

3. Spin PMMA [950 K mol. wt,, 4 % in chlorobenzene] at 8000 rpm for 60

seconds.

4. Bake 60 min. at 180 C.

5. Expose in SEM. A silver paint contact to the Si substrate allows charge to flow

off the sample. Typical exposure parameters: 12 keV electrons, beam

current 4.5 pA, exposure time 250 kis/pixel at 1OOX magnification.

6. Develop in IPA:MIBK, 1:3, until desired undercut is achieved. 10 minutes is

typical. Inspect every 3 min. for best results. Rinse thoroughly with IPA.

7. Developed samples may be kept in fluoroware containers for several months

without degradation. Undercut will increase slightly during this time.

Deposition:

1. Fasten the sample to the rotating evaporator stage. Screws must be tight enough

to hold the sample, but not so tight that they crack the substrate.

2. Evacuate chamber. Check dc plasma oxidation wire for shorts to ground.

3. Pump overnight to achieve base pressure of cryopump (-1.5 x 10-7 T).

4. Run LN through the sample stage cooling line for 1 hour before deposition.

Keep LN flowing during the entire deposition procedure. If the stage

warms, the Sn films will be lumpy, and the lines discontinuous.
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5. Tilt stage in one direction. Deposit first Sn layer quickly (about 300 A/sec).

6. Flush chamber 3 times with 60 mT 02 99.999 %.

7. With 30 mT pure 02 in the chamber, apply 1100 V to the dc plasma wire. The

plasma should glow bright blue. Keep the shutter open since the mean free

path is larger than the shutter-sample distance. Oxidize for 1-10 min for

samples with varying critical current densities. The oxide thickness seems

to saturate after 10 min. Evacuate chamber before depositing second layer.

8. Tilt stage in other direction. Quickly deposit the second Sn layer.

9. Stop the LN flow. Warm the sample to room temperature before removing.

One may wait overnight, or add N2 exchange gas after about 1.5 hr. This

reduces the total warm-up time to about 5 hours.

Deep ultraviolet (DUV) lithography:

1. Start with a Si wafer with the PMMA bilayer used for EBL (see the section

"Sample fabrication with EBL").

2. Place wafer on the rubber membrane of the DUV chuck. Be sure the mask is flat

on the chuck baseplate, not held up by the vacuum port hose barb.

3. Pump on the vacuum port. Watch the wafer contact the mask. If the wafer

slides out of position, turn off the pump, and reposition the wafer.

4. Set the integrator control to "68", and turn on DUV source. With a new bulb,

this exposure takes about 6 min.

4. Develop in IPA:MIBK, 1:3, for 60 seconds. Rinse thoroughly with IPA. The

sample is now ready for EBL.

Canyon lithography:

1. Spin PMMA [950 K mol. wt., 6 % in chlorobenzene] at 2000 rpm for 60

seconds. This results in a thick layer, about 0.7 pam.
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2. Expose in the SEM with a dose that purposefully underexposes the PMMA.

Typical parameters: 35 keV electrons, beam current 47 pA, and exposure

time 40 jis/pixel. The idea is to form a "canyon" in the resist, not a hole that

extends all the way to the substrate.

3. Develop 60 seconds in IPA:MIBK, 1:3.

4. Evaporate 300 A Cr at a 450 angle to the substrate and at least a 45' angle to any

lines. Circles are not possible with this technique, but "Manhattan"

geometries are.

5. Reactive ion etch in an 02 plasma. This transfers the pattern to the substrate and

creates the undercut. The longer the etch, the larger the undercut. Typical

parameters in the old RIE system: 100 mT 02, 30 W rf power in, 5 W

reflected, etching time 10 min.

6. Metallize, and liftoff in acetone.
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